Tính
B=\(\dfrac{\left(\dfrac{2}{3}\right)^3.\left(\dfrac{-3}{4}\right)^2.\left(-1\right)^{2011}}{\left(\dfrac{2}{5}\right)^2.\left(\dfrac{-5}{12}\right)^3}\)
1 tinh
a,\(5\dfrac{4}{23}.27\dfrac{3}{47}+4\dfrac{3}{47}.\left(-5\dfrac{4}{23}\right)\)
b,4.\(\left(\dfrac{-1}{2}\right)^3+\dfrac{3}{2}\)
c,\(\left(\dfrac{1999}{2011}-\dfrac{2011}{1999}\right)-\left(\dfrac{-12}{1999}-\dfrac{12}{2011}\right)\)
d,\(\left(\dfrac{-5}{11}+\dfrac{7}{22}-\dfrac{-4}{33}-\dfrac{5}{44}\right):\left(\dfrac{381}{22}-39\dfrac{7}{22}\right)\)
a) \(5\dfrac{4}{23}.27\dfrac{3}{47}+4\dfrac{3}{47}.\left(-5\dfrac{4}{23}\right)\)
\(=5\dfrac{4}{23}.27\dfrac{3}{47}+\left(-4\dfrac{3}{47}\right).5\dfrac{4}{23}\)
\(=5\dfrac{4}{23}.\left[27\dfrac{3}{47}+\left(-4\dfrac{3}{47}\right)\right]\)
\(=5\dfrac{4}{23}.\left(27\dfrac{3}{47}-4\dfrac{3}{27}\right)\)
\(=5\dfrac{4}{23}.23\)
\(=\dfrac{119}{23}.23\)
\(=\dfrac{119}{23}\)
b) \(4.\left(\dfrac{-1}{2}\right)^3+\dfrac{3}{2}\)
\(=4.\dfrac{-1}{6}+\dfrac{3}{2}\)
\(=\dfrac{-4}{6}+\dfrac{3}{2}\)
\(=\dfrac{-2}{3}+\dfrac{3}{2}\)
\(=\dfrac{-4}{6}+\dfrac{9}{6}\)
\(=\dfrac{5}{6}\)
c) \(\left(\dfrac{1999}{2011}-\dfrac{2011}{1999}\right)-\left(\dfrac{-12}{1999}-\dfrac{12}{2011}\right)\)
\(=\dfrac{1999}{2011}-\dfrac{2011}{1999}-\dfrac{-12}{1999}+\dfrac{12}{2011}\)
\(=\left(\dfrac{1999}{2011}+\dfrac{12}{2011}\right)-\left(\dfrac{2011}{1999}+\dfrac{-12}{1999}\right)\)
\(=\dfrac{2011}{2011}-\dfrac{1999}{1999}\)
\(=1-1\)
\(=0\)
d) \(\left(\dfrac{-5}{11}+\dfrac{7}{22}-\dfrac{-4}{33}-\dfrac{5}{44}\right):\left(\dfrac{381}{22}-39\dfrac{7}{22}\right)\)
(đợi đã, mình chưa tìm được hướng làm...)
d) \(\left(\dfrac{-5}{11}+\dfrac{7}{22}-\dfrac{-4}{33}-\dfrac{5}{44}\right):\left(\dfrac{381}{22}-39\dfrac{7}{22}\right)\)
\(=\left(\dfrac{-60}{132}+\dfrac{42}{132}-\dfrac{-16}{132}-\dfrac{15}{132}\right):\left(\dfrac{381}{22}-39\dfrac{7}{22}\right)\)
\(=\dfrac{-17}{132}:\left(\dfrac{381}{22}-\dfrac{865}{22}\right)\)
\(=\dfrac{-17}{132}:\left(-22\right)\)
\(=\dfrac{-17}{132}.\dfrac{1}{-22}\)
\(=\dfrac{-17}{-2904}=\dfrac{17}{2904}\)
Chứng minh rằng:
\(\dfrac{1}{3\left(\sqrt{2}+1\right)}+\dfrac{1}{5\left(\sqrt{3}+\sqrt{2}\right)}+\dfrac{1}{7\left(\sqrt{4}+\sqrt{3}\right)}+...+\dfrac{1}{4021\left(\sqrt{2011}+\sqrt{2010}\right)}< \dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{2011}}\right)\)
\(\dfrac{1}{\sqrt{k}+\sqrt{k+1}}=\dfrac{\sqrt{k}-\sqrt{k+1}}{k-k-1}=\sqrt{k+1}-\sqrt{k}\\ \Leftrightarrow\text{Đặt}\text{ }A=\dfrac{1}{3\left(\sqrt{2}+\sqrt{1}\right)}+\dfrac{1}{5\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{1}{4021\left(\sqrt{2011}+\sqrt{2010}\right)}< \dfrac{1}{2\left(\sqrt{2}+\sqrt{1}\right)}+\dfrac{1}{2\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{1}{2\left(\sqrt{2011}+\sqrt{2010}\right)}\\ \Leftrightarrow A< \dfrac{1}{2}\left(\dfrac{1}{\sqrt{2}+\sqrt{1}}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+...+\dfrac{1}{\sqrt{2011}+\sqrt{2010}}\right)\)
\(\Leftrightarrow A< \dfrac{1}{2}\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2011}-\sqrt{2010}\right)\\ \Leftrightarrow A< \dfrac{1}{2}\left(\sqrt{2011}-1\right)< \dfrac{1}{2}\cdot\dfrac{\sqrt{2011}-1}{\sqrt{2011}}=\dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{2011}}\right)\)
\(a,\left(\dfrac{4}{9}+\dfrac{1}{3}\right)^2\)
\(b,\left(\dfrac{1}{2}-\dfrac{3}{5}\right)^3\)
c,\(\left(\dfrac{-10}{3}\right)^5.\left(\dfrac{-6}{4}\right)^4\)
\(\left(\dfrac{3}{4}\right)^3:\left(\dfrac{3}{4}\right)^2:\left(\dfrac{-3}{2}\right)^3\)
a: \(\left(\dfrac{4}{9}+\dfrac{1}{3}\right)^2=\dfrac{49}{81}\)
b: \(\left(\dfrac{1}{2}-\dfrac{3}{5}\right)^3=-\dfrac{1}{1000}\)
c: \(\left(-\dfrac{10}{3}\right)^5\cdot\left(-\dfrac{6}{4}\right)^4=-\dfrac{6250}{3}\)
d: \(\left(\dfrac{3}{4}\right)^3:\left(\dfrac{3}{4}\right)^2:\left(-\dfrac{3}{2}\right)^3=-\dfrac{2}{9}\)
Tính nhanh :
\(\dfrac{\left(\dfrac{2}{3}\right)^3\cdot\left(-\dfrac{3}{4}\right)^2\cdot\left(-1\right)^5}{\left(\dfrac{2}{5}\right)^2\cdot\left(-\dfrac{5}{12}\right)^3}\)
\(\frac{\left(\frac{2}{3}\right)^3.\left(\frac{-3}{4}\right)^2.\left(-1\right)^5}{\left(\frac{2}{5}\right)^2.\left(\frac{-5}{12}\right)^3}=\frac{\frac{2^3}{3^3}.\frac{3^2}{4^2}.\left(-1\right)}{\frac{2^2}{5^2}.\frac{\left(-5\right)^3}{12^3}}=\)\(\frac{\frac{1}{6}.\left(-1\right)}{\frac{2^2}{5^2}.\frac{5^3}{2^6.3^3}.\left(-1\right)}=\frac{\frac{1}{2.3}}{\frac{5}{2^4.3^3}}=\frac{2^3.3^2}{5}=\frac{72}{5}\)
Tính nhanh :
\(\dfrac{\left(\dfrac{2}{3}\right)^3\cdot\left(-\dfrac{3}{4}\right)^2\cdot\left(-1\right)^5}{\left(\dfrac{2}{5}\right)^2\cdot\left(-\dfrac{5}{12}\right)^3}\)
tính :
a, \(\left[6.\left(-\dfrac{1}{3}\right)^2-3.\left(-\dfrac{1}{3}\right)+1\right]:\left(-\dfrac{1}{3}-1\right)\)
b, \(\dfrac{\left(\dfrac{2}{3}\right)^3.\left(-\dfrac{3}{4}\right)^2.\left(-1\right)^{2003}}{\left(\dfrac{2}{5}\right)^2.\left(-\dfrac{5}{12}\right)^3}\)
\(a.\)
\(\left[6.\left(-\dfrac{1}{3}\right)^2-3\left(-\dfrac{1}{3}\right)+1\right]:\left(-\dfrac{1}{3}-1\right)\)
\(=\left[6.\dfrac{1}{9}+1+1\right]:\left(-\dfrac{4}{3}\right)\)
\(=\left(\dfrac{8}{3}\right):\left(-\dfrac{4}{3}\right)\)
\(=\left(\dfrac{8}{3}\right).\left(-\dfrac{3}{4}\right)\)
\(=-2\)
\(b.\)
\(\dfrac{\left(\dfrac{2}{3}\right)^3.\left(-\dfrac{3}{4}\right)^2.\left(-1\right)^{2003}}{\left(\dfrac{2}{5}\right)^2.\left(-\dfrac{5}{12}\right)^3}\)
\(=\dfrac{\dfrac{8}{27}.\dfrac{9}{16}.\left(-1\right)}{\dfrac{4}{25}.\left(-\dfrac{125}{1728}\right)}\)
\(=\dfrac{-\dfrac{1}{6}}{-\dfrac{5}{432}}\)
\(=\dfrac{72}{5}\)
Bài 1:
a. \(\left(5^{2010}+5^{2012}+5^{2014}\right):\left(5^{2011}+5^{2009}+5^{2007}\right)\)
b. \(\left(-\dfrac{7}{45}\right)-\left(-\dfrac{1}{4}\right)-\left(-\dfrac{3}{5}\right)+\dfrac{1}{12}+\dfrac{2}{3}+\dfrac{1}{39}-\left(-\dfrac{5}{9}\right)\)
\(a)\left(5^{2010}+5^{2012}+5^{2014}\right):\left(5^{2011}+5^{2009}+5^{2007}\right)\)
\(=\dfrac{5^{2007}\left(5^3+5^5+5^7\right)}{5^{2007}\left(5^4+5^2+1\right)}=\dfrac{5^3+5^5+5^7}{5^4+5^2+1}\)
\(=\dfrac{125+3125+78125}{625+25+1}=\dfrac{81375}{651}=125\)
\(b)-\dfrac{7}{45}+\dfrac{1}{4}+\dfrac{3}{5}+\dfrac{1}{12}+\dfrac{2}{3}+\dfrac{1}{39}+\dfrac{5}{9}\)
\(=\dfrac{-7.52+1.585+3.468+1.195+2.780+1.60-5.260}{2340}\)
\(=\dfrac{-364+585+1404+195+1560+60-1300}{2340}\)
\(=\dfrac{2140}{2340}=\dfrac{107}{117}\)
Tính
a) \(\dfrac{13}{50}.\left(-15.5\right):\dfrac{13}{50}.84\dfrac{1}{2}\)
b) \(\dfrac{\left(-0,7\right)^2.\left(-5\right)^3}{\left(-2\dfrac{1}{3}\right)^3.\left(1\dfrac{1}{2}\right)^4.\left(-1\right)^5}\)
\(a,=\dfrac{13}{50}\cdot\dfrac{50}{13}\cdot\left(-\dfrac{31}{2}\right)\cdot\dfrac{169}{2}=-\dfrac{5239}{2}\\ b,=\dfrac{-\dfrac{49}{100}\cdot\left(-125\right)}{-\dfrac{343}{27}\cdot\dfrac{81}{16}\cdot\left(-1\right)}=\dfrac{\dfrac{245}{4}}{\dfrac{1029}{16}}=\dfrac{245}{4}\cdot\dfrac{16}{1029}=\dfrac{20}{21}\)
a) \(\dfrac{13}{50}.\left(-15.5\right):\dfrac{13}{50}.84\dfrac{1}{2}=\dfrac{13}{50}.-75:\dfrac{13}{50}.\dfrac{169}{2}=-\dfrac{75.169}{2}=-\dfrac{12675}{2}\)
b) \(\dfrac{\left(-0,7\right)^2.\left(-5\right)^3}{\left(-2\dfrac{1}{3}\right)^3.\left(1\dfrac{1}{2}\right)^4.\left(-1\right)^5}=\dfrac{0,49.\left(-125\right)}{-\dfrac{343}{27}.\dfrac{81}{16}.\left(-1\right)}=-\dfrac{\dfrac{245}{4}}{\dfrac{1029}{16}}=\dfrac{20}{21}\)
Bài 8:
b)\(\left(\dfrac{-4}{3}\right)+\left(\dfrac{-2}{5}\right)+\left(\dfrac{-3}{2}\right)\)
c) \(\dfrac{4}{5}-\left(\dfrac{-2}{7}\right)-\dfrac{-7}{10}\)
d) \(\dfrac{2}{3}-\left[\left(\dfrac{-7}{4}\right)-\left(\dfrac{1}{2}+\dfrac{3}{8}\right)\right]\)
\(b,=-\dfrac{40}{30}-\dfrac{12}{30}-\dfrac{45}{30}=-\dfrac{97}{30}\\ c,=\left(\dfrac{4}{5}+\dfrac{7}{10}\right)+\dfrac{2}{7}=\dfrac{3}{2}+\dfrac{2}{7}=\dfrac{25}{14}\\ d,=\dfrac{2}{3}+\dfrac{7}{4}+\dfrac{1}{2}+\dfrac{3}{8}\\ =\left(\dfrac{2}{3}+\dfrac{1}{2}\right)+\left(\dfrac{7}{4}+\dfrac{3}{8}\right)=\dfrac{7}{6}+\dfrac{17}{8}=\dfrac{79}{24}\)
c: \(\dfrac{4}{5}-\dfrac{-2}{7}-\dfrac{-7}{10}\)
\(=\dfrac{56}{70}+\dfrac{20}{70}+\dfrac{49}{70}\)
\(=\dfrac{125}{70}=\dfrac{25}{14}\)