Giải phương trình:
( x+7 )*( 3x-1 )-x^2+49=0
x^2-3x+1/x^2-3/x=-4
Bài 1 : Giải phương trình bằng cách đưa về phương trình tích
a) (2x+1) (3x-2) = (5x-8) (2x+1)
b) (4x^2-1) = (2x+1) (3x-5)
c) (x+1)^2 = 4 . (x^2-2x+1)
d) 2x^3 + 5x^2 - 3x = 0
Bài 2 : Giải phương trình :
a) 1/2x-3 - 3/x.(2x-3) = 5/x
b) x+2/x-2 - 1/x = 2/x.(x-2)
c) x+1/x-2 + x-1/x+2 = 2(x^2+2)/x^2-4
Bài 3 : Giải phương trình :
x^4 + x^3 + 3x^2 + 2x + 2 = 0
Help mee
câu a bài 1:(2x+1)(3x-2)=(5x-8)(2x+1)
<=>(2x+1)(3x-2)-(5x-8)(2x+1)=0
<=>(2x+1)(3x-2-5x+8)=0
<=>(2x+1)(6-2x)=0
bước sau tự làm nốt nha !
câu b:gợi ý: tách 4x^2-1thành (2x-1)(2x+1) rồi làm như câu a
Bài 2:
a: \(\dfrac{1}{2x-3}-\dfrac{3}{x\left(2x-3\right)}=\dfrac{5}{x}\)
\(\Leftrightarrow x-3=5\left(2x-3\right)=10x-15\)
=>-9x=-12
hay x=4/3
b: \(\Leftrightarrow x\left(x+2\right)-x+2=2\)
=>x2+2x-x+2=2
=>x2+x=0
=>x=0(loại) hoặc x=-1(nhận)
c: \(\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow x^2+3x+2+x^2-3x+2=2x^2+4\)
=>4=4(luôn đúng)
Vậy: S={x|x<>2; x<>-2}
Giải phương trình:
( x^2+3x+2)(x^2+3x+3)-2=0
( x+1)(x+2)(x+3)(x+4)-24=0
cái thứ nhất bạn dùng phương pháp đổi biến,đặt x^2+3x+2=a rùi thay vào và ptdt thành nhân tử thui
còn cái thứ 2 bạn nhân x+1 với x+4;x+2 với x+3 rùi lại dùng phương pháp đổi biến la ra thui
Giải các phương trình
a)5x-3=7
b)(x+3)(x-4)=0
c)/x\(^2\)+2014/=1
d)\(\dfrac{2}{x+1}-\dfrac{1}{x-3}=\dfrac{3x-11}{x^2-2x-3}\)
a) \(5x-3=7\)
\(\Leftrightarrow5x=7+3\)
\(\Leftrightarrow5x=10\)
\(\Leftrightarrow x=\dfrac{10}{5}\)
\(\Leftrightarrow x=2\)
Vậy \(S=\left\{2\right\}\)
b) \(\left(x+3\right)\left(x-4\right)=0\)
\(\Leftrightarrow x+3=0\) hoặc \(x-4=0\)
*) \(x+3=0\)
\(x=0-3\)
\(x=-3\)
*) \(x-4=0\)
\(x=0+4\)
\(x=4\)
Vậy \(S=\left\{-3;4\right\}\)
c) \(\left|x^2+2014\right|=1\)
\(\Leftrightarrow x^2+2014=1\) hoặc \(x^2+2014=-1\)
*) \(x^2+2014=1\)
\(\Leftrightarrow x^2=1-2014\)
\(\Leftrightarrow x^2=-2013\) (vô lý)
*) \(x^2+2014=-1\)
\(\Leftrightarrow x^2=-1-2014\)
\(\Leftrightarrow x^2=-2015\) (vô lý)
Vậy \(S=\varnothing\)
d) \(\dfrac{2}{x+1}-\dfrac{1}{x-3}=\dfrac{3x-11}{x^2-2x-3}\) (1)
ĐKXĐ: \(x\ne-1;x\ne3\)
\(\left(1\right)\Leftrightarrow2\left(x-3\right)-\left(x+1\right)=3x-11\)
\(\Leftrightarrow2x-6-x-1=3x-11\)
\(\Leftrightarrow-2x=-11+7\)
\(\Leftrightarrow-2x=-4\)
\(\Leftrightarrow x=2\) (nhận)
Vậy \(S=\left\{2\right\}\)
Giải bất phương trình,phương trình
1, 3x+1/x
2, 3/x+3 -5/2-x <1
3, 2/x-3 +3x+1/x+3=1
4 5/x^-4=2.x=2 -3.2-x
ct(/)là phần
Giải phương trình: \(x^4-3x^3-6x^2+3x+1=0\)
Nhận thấy x = 0 không phải là nghiệm.
Xét x khác 0.Chia hai vế của pt cho x2 ta được:
\(x^2-3x-6+\frac{3}{x}+\frac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-3\left(x-\frac{1}{x}\right)-6=0\)
Đặt \(x-\frac{1}{x}=a\). PT trở thành:
\(a^2-3a-4=0\Leftrightarrow\left[{}\begin{matrix}a=4\\a=-1\end{matrix}\right.\)
Với a = 4 thì \(x=4+\frac{1}{x}=\frac{4x+1}{x}\Leftrightarrow x^2-4x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{5}\\x=2-\sqrt{5}\end{matrix}\right.\) (nghiệm xấu chút nhưng dễ giải lắm ạ)
Với a = -1 thì \(x=\frac{1}{x}-1=\frac{1-x}{x}\Leftrightarrow x^2+x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1+\sqrt{5}}{2}\\x=\frac{-1-\sqrt{5}}{2}\end{matrix}\right.\) (cái này thì max xấu rồi ;( )
Giải bất phương trình
a)x\(^2\)-2x=0
b)\(\dfrac{x+1}{x-2}\)-\(\dfrac{5}{x+2}\)=\(\dfrac{12}{x^2-4}\)+1
c)/x-1/-/3x-5/=0
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b.\(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(ĐK:x\ne\pm2\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)-5\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{12+\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)-5\left(x-2\right)=12+\left(x^2-4\right)\)
\(\Leftrightarrow x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow-2x=-4\)
\(\Leftrightarrow x=2\left(ktm\right)\)
Vậy pt vô nghiệm
\(a,x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(b,\dfrac{x+1}{x-2}-\dfrac{5}{x-2}=\dfrac{12}{x^2-4}+1\) (ĐKXĐ : x ≠ 2 ; x ≠ -2)
\(\Rightarrow\left(x+1\right)\left(x+2\right)-5\left(x+2\right)=12+\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow x^2+3x+2-5x-10=12+x^2+2x-2x+4\)
\(\Leftrightarrow2x=24\)
\(\Leftrightarrow x=12\left(N\right)\)
câu c chưa học :vv
a)
<=> x (x-2 ) = 0
<=> x =0
x = 2
b)
đkxđ : x khác 2 , x khác -2
<=> \(\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{12}{x^2-4}+\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=0\)
<=> \(\dfrac{x^2+3x+2}{....}-\dfrac{5x-10}{....}-\dfrac{12}{...}+\dfrac{x^2-4}{....}=0\)
<=> \(x^2+3x+2-5x+10-12+x^2-4=0\)
<=> \(2x^2-2x-4=0\)
<=> x =2 (ktm)
Vậy..
giải các phương trình sau bằng cách đưa về dạng ax+b=0
1)2x-4-3x/5/15=7x-x-3/2-5-x+1
2)x-3/17(2x-1)=7/34(1-2x)+10x-3/2
Rút gọn thừa số chung :
\(.\frac{x}{3x-1}+\frac{1}{3x-1}=\frac{x}{3x+2}+\frac{3}{3x+2}\)
Đơn giản biểu thức :
\(-\frac{x}{3x+2}-\frac{3}{3x+2}+\frac{x}{3x-1}+\frac{1}{3x-1}=0\)
Giải phương trình
\(-\frac{3x-5}{\left(3x-1\right)\left(3x+2\right)}=0\)
Giải phương trình :
3x=5
\(\frac{1}{3x-1}=0\)
\(\frac{1}{3x+2}=0\)
giải phương trình chứa dấu giá trị tuyệt đối sau:
\(a)|-2,5x|=x-12\)
\(b)|5x|-3x-2=0\)
\(c)|-2x|+x-5x-3=0\)
\(d)|3-x|+x^2-x(x+4)=0\)
\(e)(x-1)^2+|x+21|-x^2-13=0\)