Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kirigaya Kazuto
Xem chi tiết
dsađá
Xem chi tiết
Lấp La Lấp Lánh
7 tháng 2 2022 lúc 18:18

\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x-1}-\dfrac{1}{\sqrt{x}+1}\left(đk:x\ne1,x\ge0\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}-2\sqrt{x}-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

Ami Mizuno
7 tháng 2 2022 lúc 18:20

ĐKXĐ: \(x\ne1,x\ge0\)

\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x-1}-\dfrac{1}{\sqrt{x}+1}=\)\(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}-\dfrac{2\sqrt{x}}{x-1}-\dfrac{\sqrt{x}-1}{x-1}=\)\(\dfrac{x+\sqrt{x}-2\sqrt{x}-\sqrt{x}+1}{x-1}=\)\(\dfrac{x-2\sqrt{x}+1}{x-1}=\)\(\dfrac{(\sqrt{x}-1)^2}{x-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

Đặng Minh Đức
Xem chi tiết
SV
12 tháng 10 2014 lúc 7:24

A=1+3+32 +...+3299 +3300

3A=3+32 +...+3299 +3300 +3301

3A-A=3301 - 1

=> A=\(\frac{3^{^{301}}-1}{2}\)

nguyễn đuỳnh thăng
Xem chi tiết
Nguyễn Bích Nguyệt
26 tháng 8 2018 lúc 22:13

3√2 - 5√18 + 6√72 - 4√98 = 3√2-5.3√2+6.2.3√2-4.7/3.3√2

                                          = 3√2(1-5+12-28/3)
                                          = 3√2.(-4/3)
                                          = -4√2

Takudo Nhọ
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 10 2021 lúc 23:15

\(A=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{x-\sqrt{x}-2-\sqrt{x}-\sqrt{x}+2}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=-\sqrt{x}\cdot\left(\sqrt{x}+1\right)\)

Tung Nguyễn
Xem chi tiết
Hoàng Lê Bảo Ngọc
15 tháng 7 2016 lúc 22:31

Điều kiện xác định : \(x\ge0;y\ge0;\sqrt{x}-\sqrt{y}\ne-3\)

Ta có : \(\frac{x-y+3\sqrt{x}+3\sqrt{y}}{\sqrt{x}-\sqrt{y}+3}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+3\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}+3}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+3\right)}{\sqrt{x}-\sqrt{y}+3}=\sqrt{x}+\sqrt{y}\)

Quỳnh Anh
Xem chi tiết

     2\(\sqrt{\dfrac{16}{3}}\)  - 3\(\sqrt{\dfrac{1}{27}}\) - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{3}{3\sqrt{3}}\)  - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{1}{\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{16}{2\sqrt{3}}\) - \(\dfrac{2}{2\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{11}{2\sqrt{3}}\)

\(\dfrac{11\sqrt{3}}{6}\)

f, 2\(\sqrt{\dfrac{1}{2}}\)\(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)

\(\dfrac{2}{\sqrt{2}}\) - \(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)

\(\dfrac{5}{2\sqrt{2}}\)

\(\dfrac{5\sqrt{2}}{4}\)

 

 

(1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1- \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\)

\(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3+\sqrt{3}}{\sqrt{3}+1}\)

\(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)

\(\dfrac{-4}{3-1}\)

\(\dfrac{-4}{2}\)

= -2

   \(\dfrac{2}{\sqrt{6}-2}+\dfrac{2}{\sqrt{6}+2}+\dfrac{5}{\sqrt{6}}\)

\(\dfrac{2.\left(\sqrt{6}+2\right)+2\left(\sqrt{6}-4\right)}{\left(\sqrt{6}-2\right)}\) + \(\dfrac{5}{\sqrt{6}}\)

\(\dfrac{2\sqrt{6}+4+2\sqrt{6}-4}{6-4}\) + \(\dfrac{5\sqrt{6}}{6}\)

\(\dfrac{4\sqrt{6}}{2}\) + \(\dfrac{5\sqrt{6}}{6}\)

\(\dfrac{12\sqrt{6}+5\sqrt{6}}{6}\)

\(\dfrac{17\sqrt{6}}{6}\)

Nguyễn Ích Đạt
Xem chi tiết
Lê Viết Hiệp
Xem chi tiết
Haru
1 tháng 5 2021 lúc 17:27

5.7.11.13.37-10101/1212120+40404

=3.5.7.11.13.37-10101/1212120.1/10+40404 (vì 1/1212120=1/121212.1/10)

= 3.37.7.11.13.5-101010/121212.1/100+40404

=111.1001.5-5/6.1/100+40404

=151515.5-250/3

=595959-250/3

=1787876/3

Khách vãng lai đã xóa
Nguyễn Mạnh Vũ
Xem chi tiết
Akai Haruma
28 tháng 10 2023 lúc 10:59

Lời giải:
$A=\cos 2x-2\sin 5x\sin x=\cos 2x-2.\frac{-1}{2}[\cos (5x+x)-\cos (5x-x)]$

$=\cos 2x+\cos 6x-\cos 4x$

$=(\cos 2x+\cos 6x)-\cos 4x$

$=2\cos \frac{2x+6x}{2}\cos \frac{6x-2x}{2}-\cos 4x$

$=2\cos 4x\cos 2x-\cos 4x$

$=\cos 4x[2\cos 2x-1]$

Những đáp án A,B,C,D bạn đưa ra không có đáp án nào đúng cả.