Giải pt x (x + 3) (x + 3) = 0
giải pt: x^5 + 2x^4 +3x^3 + 3x^2 + 2x +1=0
giải pt: x^4 + 3x^3 - 2x^2 +x - 3=0
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
ai biết cách nhẩm nghiệm phương trình bậc 3 không ạ
giải pt: 2x^3 + 7x^2 - x - 12 =0
giải pt : - x^3 + x^2 + 7x + 2 =0
mình vừa lên lớp 9 , chưa học phương trình bậc 2
a)2x3 + 7x2 - x - 12 =0
=>2x3+x2-4x+6x2+3x-12=0
=>x(2x2+x-4)+3(2x2+x-4)=0
=>(x+3)(2x2+x-4)=0
=>x+3=0 hoặc 2x2+x-4=0
Xét x+3=0 <=>x=-3
Xét 2x2+x-4=0 ta dùng delta
\(\Delta=1^2-\left(-4\left(2.4\right)\right)=33>0\)
=>pt có 2 nghiệm phân biệt
\(\Rightarrow x_{1,2}=\frac{-1\pm\sqrt{33}}{4}\)
b)- x^3 + x^2 + 7x + 2 =0
=>-x3+3x2+x-2x2+6x+2=0
=>-x(x2-3x-1)+(-2)(x2-3x-1)=0
=>-(x+2)(x2-3x-1)=0
=>-(x+2)=0 hoặc x2-3x-1=0
Xét -(x+2)=0 <=>x=-2
Xét x2-3x-1=0 theo delta ta có:
\(\Delta=\left(-3\right)^2-\left(-4\left(1.1\right)\right)=13>0\)
=>pt cũng có 2 nghiệm phân biệt
\(\Rightarrow x_{1,2}=\frac{3\pm\sqrt{13}}{2}\)
Giải pt:
\(x-3\sqrt{x-3}-3=0\)
ĐKXĐ: \(x\ge3\)
\(x-3\sqrt{x-3}-3=0\Rightarrow x-3-3\sqrt{x-3}=0\)
\(\Rightarrow\sqrt{x-3}\left(\sqrt{x-3}-3\right)=0\Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x-3}=3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=12\end{matrix}\right.\)
ĐK: `x>=3`
`x-3\sqrt(x-3)-3=0`
`<=>(x-3)-3\sqrt(x-3)=0`
`<=>\sqrt(x-3) (\sqrt(x-3)-3)=0`
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x-3}=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=12\end{matrix}\right.\)
Vậy...
ĐK: \(x\ge3\)
\(PT\Leftrightarrow\sqrt{x-3}\left(\sqrt{x-3}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x-3=9=>x=12\left(tm\right)\end{matrix}\right.\)
Vậy...
Giải pt
`x^3+1/x^3=6(x+1/x)(x ne 0)`
`x^3+1/x^3=6(x+1/x)(x ne 0)`
`<=>(x+1/x)(x^2-1+1/x^2)=6(x+1/x)`
`<=>(x+1/x)(x^2-1+1/x^2-6)=0`
`<=>((x^2+1)/x)(x^2+1/x^2-7)=0`
`(x^2+1)/x ne 0(AA x)`
`=>x^2+1/x^2-7=0`
`=>x^2+2+1/x^2-9=0`
`<=>(x+1/x)^2-3=0`
`<=>(x+1/x+3)(x+1/x-3)=0`
`+)x+1/x+3=0`
`<=>(x^2+3x+1)/x=0`
`<=>x^2+3x+1=0`
`<=>x^2+3x+9/4=5/4`
`<=>(x+3/2)^2=5/4`
`<=>x=(+-\sqrt{5}-3)/2`
`+)x+1/x-3=0`
`<=>(x^2-3x+1)/x=0`
`<=>x^2-3x+1=0`
`<=>x^2-3x+9/4=5/4`
`<=>(x-3/2)^2=5/4`
`<=>x=(+-\sqrt{5}+3)/2`
Vậy `S={(\sqrt{5}-3)/2,(-\sqrt{5}-3)/2,(\sqrt{5}+3)/2,(-\sqrt{5}+3)/2}`
ĐK: \(x\ne0\)
\(PT\Leftrightarrow\left(x+\dfrac{1}{x}\right)\left(x^2-1+\dfrac{1}{x^2}\right)=6\left(x+\dfrac{1}{x}\right)\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)\left(x^2+\dfrac{1}{x^2}-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=0\\x^2+\dfrac{1}{x^2}-7=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=0\left(loai\right)\\x^4-7x^2+1=0\left(1\right)\end{matrix}\right.\)
Giải (1): \(\Leftrightarrow x^2=\dfrac{7\pm3\sqrt{5}}{2}\) \(\Rightarrow x=\pm\sqrt{\dfrac{7\pm3\sqrt{5}}{2}}\)
Giúp tớ với.
Bài 1 : cho pt : 4x^2 - 25 + k^2 + 4kx = 0
1. Giải pt với k =0
2. Giải pt với k = -3
3. Tìm các giá trị của k để pt nhận nghiệm là 2.
Bài 2 : Tính
1. x + 1/x-1 ( dấu / là phân số nhé ) - x-1/ x+1 = 16/x^2 - 1
2. 12/x^2-4 - x+1/x-2 + x+7/x+2 = 0
3. 12/8+x^3 = 1 + 1/1+2
4. x + 25/2x^2-50 - x+5/x^2-5x = 5-x/2x^2+10
bai 1
1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0
<=>(2x)^2-5^2=0
<=>(2x+5)*(2x-5)=0
<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự
giải pt
`a,(x+\sqrt{3})+4(x^2-3)=0`
`a,(x+\sqrt{3})+4(x^2-3)=0`
`<=>(x+\sqrt{3})+4(x-\sqrt{3})(x+\sqrt{3})=0`
`<=>(x+\sqrt{3})[4(x-\sqrt{3}+1]=0`
`<=>(x+\sqrt{3})(4x-4\sqrt{3}+1)=0`
`<=>` \(\left[ \begin{array}{l}x+\sqrt{3}=0\\4x-4\sqrt{3}+1=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=-\sqrt{3}\\4x=4\sqrt{3}-1\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=-\sqrt{3}\\x=\sqrt{3}-\dfrac{1}{4}\end{array} \right.\)
Vậy phương trình có tập nghiệm `S={-\sqrt{3},\sqrt{3}-1/4}`
\(\Leftrightarrow\left(x+\sqrt{3}\right)+4\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)
\(\Leftrightarrow\left(x+\sqrt{3}\right)\left(1+4x-4\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{3}\\x=\dfrac{4\sqrt{3}-1}{4}\end{matrix}\right.\)
a) Ta có: \(\left(x+\sqrt{3}\right)+4\left(x^2-3\right)=0\)
\(\Leftrightarrow\left(x+\sqrt{3}\right)+4\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)
\(\Leftrightarrow\left(x+\sqrt{3}\right)\left(1+4x-4\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=0\\4x+1-4\sqrt{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\4x=4\sqrt{3}-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=\dfrac{4\sqrt{3}-1}{4}\end{matrix}\right.\)
Vậy: \(S=\left\{\sqrt{3};\dfrac{4\sqrt{3}-1}{4}\right\}\)
giải pt \(x^3-3x^2+2\sqrt{x+3}^3-9x=0\)
\(\left(x+3\right)^3-\left(x-1\right)^3=0\)
Giải pt
\(\Leftrightarrow\left(x^3+3x^2.3+3.x.3^2+3^3\right)-\left(x^3-3x^2+3x-1\right)=0\\ \Leftrightarrow\left(x^3-x^3\right)+\left(9x^2+3x^2\right)+\left(27x-3x\right)+\left(27+1\right)=0\\ \Leftrightarrow12x^2+24x+28=0\\ \Leftrightarrow x^2+2x+\dfrac{7}{3}=0\\ \Leftrightarrow\left(x^2+2x+1\right)+\dfrac{4}{3}=0\\\Leftrightarrow\left(x+1\right)^2+\dfrac{4}{3}=0\\ \Leftrightarrow\left(x+1\right)=-\dfrac{4}{3}\left(vô.lí\right)\)
=> Pt vô nghiệm
1 ) giải pt căn 10 -x cộng căn x+3 = x bình - 2x +6
2) giải pt căn x+1 cộng căn x+6 trừ căn x-2 = 4
3) cho pt ( x-2) × ( x bình + m x +m -1 ) = 0 . Tìm m để pt có 3 ng pb
4 ) cho pt x × ( x+1) × ( x+2) × ( x+3) = m . Tìm m để pt đã cho có nghiệm