ĐKXĐ: \(x\ge3\)
\(x-3\sqrt{x-3}-3=0\Rightarrow x-3-3\sqrt{x-3}=0\)
\(\Rightarrow\sqrt{x-3}\left(\sqrt{x-3}-3\right)=0\Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x-3}=3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=12\end{matrix}\right.\)
ĐK: `x>=3`
`x-3\sqrt(x-3)-3=0`
`<=>(x-3)-3\sqrt(x-3)=0`
`<=>\sqrt(x-3) (\sqrt(x-3)-3)=0`
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x-3}=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=12\end{matrix}\right.\)
Vậy...
ĐK: \(x\ge3\)
\(PT\Leftrightarrow\sqrt{x-3}\left(\sqrt{x-3}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x-3=9=>x=12\left(tm\right)\end{matrix}\right.\)
Vậy...