Phân tích đa thức thành nhân tử:
a, \(1-a\sqrt{a}\)
b, \(x-2\sqrt{x-1}\)
Phân tích đa thức thành nhân tử:
a) \(x^2-3\)
b) \(ab+b\sqrt{a}+\sqrt{a}+1\)
a)=(x-√3)(x+√3)
b)=b√a(√a+1)+(√a+1)
=(√a+1)(b√a+1)
Phân tích đa thức thành nhân tử:
a) \(x+3\sqrt{x}-4\)
b) \(x\sqrt{x}-1\)
a: =(căn x+4)(căn x-1)
b: =(căn x-1)(x+căn x+1)
Phân tích các đa thức sau thành nhân tử:
a) \({a^3} - {a^2}b + a - b\) b) \({x^2} - {y^2} + 2y - 1\)
`a, a^3 - a^2b + a - b`
`= a^2(a-b) + (a-b)`
`= (a^2+1)(a-b)`
`b, x^2 - y^2 + 2y - 1`
`= x^2 - (y-1)^2`
`= (x-y+1)(x+y-1)`
phân tích đa thức thành nhân tử (với a b x y không âm, a> b)
a) xy - \(y\sqrt{x}\) + \(\sqrt{x}-1\)
b) \(\sqrt{ab}-\sqrt{by}+\sqrt{bx}+\sqrt{ay}\)
c) \(\sqrt{a+b}+\sqrt{a^2+b^2}\)
d) 12 - \(\sqrt{x}\) - x
d: \(=-\left(x+\sqrt{x}-12\right)=-\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)\)
Bài 1. Phân tích các đa thức sau thành nhân tử:
a) 4a2-6b b) m3n-2m2n2-mn
Bài 2.Phân tích các đa thức sau thành nhân tử:
a) 4(2-u)2+uv-2v
b) a(a-b)3-b(b-a)2-b2(a-b)
Bài 1:
a: \(4a^2-6b=2\left(2a^2-3b\right)\)
b: \(m^3n-2m^2n^2-mn\)
\(=mn\left(m^2-2mn-1\right)\)
Bài 1:
a) \(4a^2-6b=2\left(a^2-3b\right)\)
b) \(=mn\left(m^2-2mn-1\right)\)
Bài 2:
a) \(=4\left(u-2\right)^2+v\left(u-2\right)=\left(u-2\right)\left(4u-8+v\right)\)
b) \(=a\left(a-b\right)^3-b\left(a-b\right)^2-b^2\left(a-b\right)=\left(a-b\right)\left[a\left(a-b\right)^2-b\left(a-b\right)-b^2\right]=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab+b^2-b^2\right)=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab\right)\)
1/ Phân tích đa thức thành nhân tử:
a/ a 2b + 3ab
b/ x 2 – 2x + 1
c/ x 3 – 6x2 + 9x – xy2
\(a,=ab\left(a+3\right)\\ b,=\left(x-1\right)^2\\ c,=x\left[\left(x-3\right)^2-y^2\right]=x\left(x-y-3\right)\left(x+y-3\right)\)
Phân tích các đa thức sau thành nhân tử:
a) \(4{x^2} - 1\)
b) \({\left( {x + 2} \right)^2} - 9\)
c) \({\left( {a + b} \right)^2} - {\left( {a - 2b} \right)^2}\)
a) \(4x^2-1=\left(2x+1\right)\left(2x-1\right)\)
b) \(\left(x+2\right)^2-9=\left(x-1\right)\left(x+5\right)\)
c) \(\left(a+b\right)^2-\left(a-2b\right)^2\)
\(=\left(a+b-a+2b\right)\left(a+b+a-2b\right)\)
\(=3b\left(2a-b\right)\)
`a, 4x^2-1 = (2x+1)(2x-1)`
`b, (x+2)^2-9 = (x+2-3)(x+2+3) = (x-1)(x+5)`
`c, (a+b)^2-(a-2b)^2 = (a+b+a-2b)(a+b-a+2b) = (2a-b)(3b)`
phân tích đa thứ thành nhân từ
a)\(x\sqrt{x}+\sqrt{x}-x-1\)
b)\(\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\)
a) \(x\sqrt{x}+\sqrt{x}-x-1\)
\(=\left(x\sqrt{x}-x\right)+\left(\sqrt{x}-1\right)\)
\(=x\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)\)
\(=\left(\sqrt{x}-1\right)\left(x+1\right)\)
b) \(\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\)
\(=\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)\)
\(=\left(\sqrt{b}+2\right)\left(\sqrt{a}+3\right)\)
TỰ LUẬN (7 điểm)
Câu 1. (2,0 điểm) Cho đa thức A = (x+2)(x²-2x+4)+x(1-x)
a) Rút gọn đa thức A?
b) Tính giá trị đa thức A khi x = -4
c) Tìm giá trị của x để A = -2
Câu 2. (1,5 điểm) Phân tích các đa thức sau thành nhân tử:
a) x³-3x²
b) 5x310x2 + 5x
Câu 3. (3,0 điểm). Cho tam giác ABC vuông tại A. (AB < AC), đường cao AH. Từ H kẻ HẸ và HF lần lượt vuông góc với AB và AC. (E AB, Fe AC).
a) Chứng minh rằng: AH = EF?.
b) Trên FC lấy điểm K sao cho FK = AF. Chứng minh rằng tứ giác EHKF là hình bình hành?
c) Gọi O là giao điểm của AH và EF, 1 là giao điểm của HF và ẸK. Chứng minh: 1 OLIAC và OI = AK? 4
Câu 4. (0,5 điểm)
Tìm GTNN của biểu thức sau: A = 2x² + y²+2xy + 2x-2y+2028
Hết
Câu 1:
a: Sửa đề: \(A=\left(x+2\right)\left(x^2-2x+4\right)+x\left(1-x\right)\left(1+x\right)\)
\(=x^3+2^3+x\left(1-x^2\right)\)
\(=x^3+8+x-x^3\)
=x+8
b: Khi x=-4 thì A=-4+8=4
c: Đặt A=-2
=>x+8=-2
=>x=-10
Câu 2:
a: \(x^3-3x^2=x^2\cdot x-x^2\cdot3=x^2\left(x-3\right)\)
b: \(5x^3+10x^2+5x\)
\(=5x\cdot x^2+5x\cdot2x+5x\cdot1\)
\(=5x\left(x^2+2x+1\right)\)
\(=5x\left(x+1\right)^2\)