Số các số chẵn khác nhau có thể lập được từ 0;1;3;5 là ...
Số các số chẵn có ba chữ số khác nhau có thể lập được từ bốn chữ số 0; 1; 3; 5 là:
3510;5310;1350;1530;5130;3150
dễ mà bạn
1350;5310;3150;5130;1530;3510
khó hơn đi
Từ các chữ số 0; 1; 2; 3; 4; 5 có thể lập được bao nhiêu số chẵn gồm 4 chữ số khác nhau ?
A. 156
B. 144
C. 96
D. 134
Gọi số cần tìm có dạng a b c d ¯ với a , b , c , d ∈ A = 0 , 1 , 2 , 3 , 4 , 5 .
Vì a b c d ¯ là số chẵn ⇒ d ∈ 0 , 2 , 4 .
TH1. Nếu d = 0 số cần tìm là a b c 0 ¯ . Khi đó: A \ 0 , a , b
a được chọn từ tập A \ 0 nên có 5 cách chọn.
b được chọn từ tập A \ 0 , a nên có 4 cách chọn.
c được chọn từ tập nên có 3 cách chọn.
Như vậy, ta có 5.4.3 = 60 số có dạng a b c 0 ¯ .
TH2. Nếu d = 2 , 4 ⇒ d : có 2 cách chọn.
Khi đó, a có 4 cách chọn (khác 0 và d), b có 4 cách chọn và c có 3 cách chọn.
Như vậy, ta có 2.4.4.3 = 96 số
Vậy có tất cả 60 + 96 = 156 số
Chọn đáp án A.
Từ các chữ số 0; 1; 2; 3; 4; 5 có thể lập được bao nhiêu số chẵn gồm 4 chữ số khác nhau ?
A. 156
B. 144
C.96
D. 134
Gọi số cần tìm có dạng a b c d ¯ với a , b , c , d ∈ A = 0 , 1 , 2 , 3 , 4 , 5 .
Vì a b c d ¯ là số chẵn ⇒ d = 0 , 2 , 4 .
TH1. Nếu d= 0, số cần tìm là a b c 0 ¯ . Khi đó:
a được chọn từ tập A \ 0 nên có 5 cách chọn.
b được chọn từ tập A \ 0 , a nên có 4 cách chọn.
c được chọn từ tập A \ 0 , a , b nên có 3 cách chọn.
Như vậy, ta có 5.4.3 = 60 số có dạng a b c 0 ¯ .
TH2. Nếu d ∈ 2 , 4 ⇒ d có 2 cách chọn.
Khi đó, a có 4 cách chọn (khác 0 và d),
b có 4 cách chọn và c có 3 cách chọn.
Như vậy, ta có 2.4.4.3 = 96 số cần tìm như trên.
Vậy có tất cả 60 +96 = 156 số cần tìm.
Chọn đáp án A.
Từ các chữ số 0, 1, 2, 3 có thể lập được bao nhiêu số thỏa mãn:
a) Là số tự nhiên có ba chữ số khác nhau?
b) Là số tự nhiên chẵn có ba chữ số khác nhau?
a) Từ 4 chữ số 0, 1, 2, 3:
- Hàng trăm có 3 cách chọn.
- Hàng chục có 3 cách chọn.
- Hàng đơn vị có 2 cách chọn.
Vậy có tất cả 3.3.2 = 18 số tự nhiên khác nhau có 3 chữ số được lập từ 0, 1, 2, 3.
b) - Trường hợp 1: hàng đơn vị là số 0 như vậy hàng trăm có 3 cách chọn, hàng chục có 2 cách chọn.
Có tất cả 1. 2. 3 = 6 số có thể lập được.
- Trường hợp 2: hàng đơn vị là số 2 như vậy hàng trăm có 2 cách chọn, hàng chục có 2 cách chọn.
Có tất cả 1. 2. 2 = 4 số có thể lập được.
Vậy có thể lập 6 + 4 = 10 số tự nhiên chẵn có ba chữ số khác nhau.
Từ các chữ số {0, 3, 4, 5, 6, 7} có thể lập được bao nhiêu số tự nhiên chẵn gồm 4 chữ số khác nhau ?
Số cần tìm có dạng \(\overline{abcd}\left(a,b,c,d\in\left\{0;3;4;5;6;7\right\}\right)\)
TH1: \(d=0\)
a có 5 cách chọn
b có 4 cách chọn
c có 3 cách chọn
\(\Rightarrow\) Có \(3.4.5=60\) cách lập.
TH2: \(d\ne0\)
d có 2 cách chọn
a có 4 cách chọn
b có 4 cách chọn
c có 3 cách chọn
\(\Rightarrow\) Có \(2.3.4.4=96\) cách lập.
Vậy có \(96+60=156\) cách lập.
Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 có thể lập được bao nhiêu số tự nhiên:
a) Chẵn và có 4 chữ số khác nhau;
b) Có 7 chữ số khác nhau và phải có mặt 3 chữ số 0, 1, 2 và 3 chữ số này
đứng cạnh nhau
a. Gọi chữ số cần lập là \(\overline{abcd}\)
TH1: \(d=0\Rightarrow\) bộ abc có \(A_9^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 4 cách chọn (từ 2,4,6,8)
a có 8 cách chọn (khác 0 và d), b có 8 cách chọn (khác a và d), c có 7 cách chọn (khác a,b,d)
\(\Rightarrow4.8.8.7\) số
Tổng cộng: \(A_9^3+4.8.8.7=...\)
b. Chọn 4 chữ số còn lại: có \(C_7^4\) cách
Hoán vị 3 chữ số 0,1,2: có \(3!\) cách
Coi bộ 3 chữ số này là 1 số, hoán vị với 4 chữ số còn lại: \(5!\) cách
Ta đi tính số trường hợp 0 đứng đầu:
Số 0 đứng đầu trong bộ 0,1,2: có \(2!\) cách
Đặt bộ 0,1,2 đứng đầu, xếp vị trí cho 4 chữ số còn lại: \(4!\) cách
Vậy có: \(C_7^4.\left(3!.5!-2!.4!\right)=...\) số
Từ các chữ số : 0 , 2 , 3 , 5 , 6 , 7 , có thể lập được bao nhiêu số chẵn gồm 4 chữ số khác nhau?
Hàng đơn vị là chữ số 0:
5 cách lựa chọn hàng nghìn, 4 cách lựa chọn hàng trăm, 3 cách lựa chọn hàng chục.
Có 5 x 4 x 3 = 60 (số)
Hàng đơn vị là 2 hoặc 6:
4 x 4 x 3 = 48 (số)
Số số chẵn có 4 chữ số khác nhau: 60 + 48 x 2 = 156 (số)
Từ các số 0 ; 1 ; 2 ; 3 ; 4 ; 5 có thể lập được bao nhiêu số chẵn có 4 chữ số khác nhau?
A. 3 C 5 3
B. 156
C. 180
D. 3 A 5 3
Đáp án B
Gọi số cần lập là a b c d ¯
TH1: d = 0 có 5.4.3 = 60 số thỏa mãn
TH2: d = 2 ; 4 có 2.4.4.3 = 96 số thỏa mãn
Vậy có 156 số
Từ các số {0;1;2;3;4;5}có thể lập được bao nhiêu số chẵn có 4 chữ số khác nhau?
A. 3 . C 5 3
B. 156
C. 180
D. 3 . A 5 3
Đáp án B
Gọi số cần lập là a b c d
TH1: d = 0 có 5.4.3 = 60 số thỏa mãn
TH2: d = {2;4} có 2.4.4.3 = 96 số thỏa mãn
Vậy có 156 số