nghiệm của phương trình \(\left(2x-\frac{\pi}{4}\right)=1\) trong khoảng \(\left(\pi;2\pi\right)\) là gì ?
Cho phương trình \(3\sin^2x+2\left(m+1\right)sinx.cosx+m-2=0\)Số giá trị nguyên của m để trên khoảng\(\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\)phương trình có hai nghiệm \(x_1,x_2\) với\(x_1\in\left(-\frac{\pi}{2};0\right),x_2\in\left(0;\frac{\pi}{2}\right)\)là
Số nghiệm của phương trình \(tanx = 3\) trong khoảng \(\left( { - \frac{\pi }{2};\frac{{7\pi }}{3}} \right)\) là
A. 1
B. 2
C. 3
D. 4
Xét phương trình \(tanx = 3\)\( \Leftrightarrow \;x{\rm{ }} \approx {\rm{ }}1,25{\rm{ }} + {\rm{ }}k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}\).
Do \( - \frac{\pi }{2} < x < \frac{{7\pi }}{3} \Leftrightarrow - \frac{\pi }{2} < 1,25{\rm{ }} + {\rm{ }}k\pi < \frac{{7\pi }}{3}\)\( \Leftrightarrow - 0,9 < k < 1,94,\)\(k\; \in \;\mathbb{Z}\).
Mà k ∈ ℤ nên k ∈ {0; 1}.
Vậy có 2 nghiệm của phương trình đã cho nằm trong khoảng \(\left( { - \frac{\pi }{2};\frac{{7\pi }}{3}} \right)\).
Đáp án: B
Nghiệm lớn nhất trong khoảng \(\left(0;2\pi\right)\) của phương trình \(sin\left(2x+\frac{5\pi}{2}\right)-3cos\left(x-\frac{7\pi}{2}\right)=1+2sinx\)
\(sin\left(2x+\frac{\pi}{2}+2\pi\right)-3cos\left(x+\frac{\pi}{2}-4\pi\right)=1+2sinx\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{2}\right)-3cos\left(x+\frac{\pi}{2}\right)=1+2sinx\)
\(\Leftrightarrow cos2x+3sinx=1+2sinx\)
\(\Leftrightarrow1-2sin^2x+sinx=1\)
\(\Leftrightarrow sinx\left(1-2sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
Nghiệm lớn nhất là \(x=\pi\)
số nghiệm của phương trình \(\cos\left(\frac{x}{2}+\frac{\pi}{4}\right)=0\) thuộc khoảng \(\left(\pi;8\pi\right)\)là bao nhiêu ?
Cho phương trình \(3\sin^2x+2\left(m+1\right)sinx.cosx+m-2=0\)Số giá trị nguyên của m để trên khoảng
\(\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\)phương trình có hai nghiệm \(x_1,x_2\) với\(x_1\in\left(-\frac{\pi}{2};0\right),x_2\in\left(0;\frac{\pi}{2}\right)\)là
1) tìm m để phương trình 2sinx+mcosx=1-m có nghiệm x thuộc \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)
2) tìm nghiệm của phương trình : \(sinx^24x+3.sin4x.cos4x-4.cos^24x=0\) khoảng \(\left(0;\frac{\pi}{2}\right)\)
3) tìm tất cả các nghiệm của phương trình cos5x.cosx= cos4x.cos2x+ \(3cos^2x+1\) thuộc khoảng \(\left(-\pi;\pi\right)\)
4) tìm tất cả các nghiệm trong khoảng (\(\frac{2\pi}{5};\frac{6\pi}{7}\)) của phương trình: \(\sqrt{3}sin7x-cos7x=\sqrt{2}\)
số nghiệm của phương trình \(\sin\left(2x+\frac{\pi}{4}\right)=-1\) thuộc đoạn \(\left[0;\pi\right]\)là bao nhiêu ?
Phương trình \(\cot x = - 1\) có nghiệm là:
A.\( - \frac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
B.\(\frac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
C.\(\frac{\pi }{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
D.\( - \frac{\pi }{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
Ta có
\(\begin{array}{l}\cot x{\rm{ }} = {\rm{ - 1}}\\ \Leftrightarrow \cot x{\rm{ }} = {\rm{ cot - }}\frac{\pi }{4}\\ \Leftrightarrow x{\rm{ }} = {\rm{ - }}\frac{\pi }{4} + k\pi ;k \in Z\end{array}\)
Vậy phương trình đã cho có nghiệm là \(x{\rm{ }} = {\rm{ - }}\frac{\pi }{4} + k\pi ;k \in Z\)
Chọn A
1) tìm tất cả các nghiệm của phương trình:\(sin3x-\frac{2}{\sqrt{3}}sin^2x=2sinx.cos2x\) thuộc đoạn \(\left[0;2\pi\right]\)
2) tìm nghiệm của phương trình: \(sin^2x+sin^22x+sin^23x=\frac{3}{2}\) trong khoảng \(\left(\frac{-\pi}{2};\frac{\pi}{2}\right)\)
3) tìm nghiệm của phương trình: \(sin2x+sinx-\frac{1}{2sinx}-\frac{1}{2sinx}=2cot2x\) trong khoảng (0;\(\pi\))
4) phương trình cos22x+3cos18x+3cos14x+cos10x=0 có bao nhiêu nghiệm thuộc khoảng (0;\(\frac{\pi}{2}\))