Xét phương trình \(tanx = 3\)\( \Leftrightarrow \;x{\rm{ }} \approx {\rm{ }}1,25{\rm{ }} + {\rm{ }}k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}\).
Do \( - \frac{\pi }{2} < x < \frac{{7\pi }}{3} \Leftrightarrow - \frac{\pi }{2} < 1,25{\rm{ }} + {\rm{ }}k\pi < \frac{{7\pi }}{3}\)\( \Leftrightarrow - 0,9 < k < 1,94,\)\(k\; \in \;\mathbb{Z}\).
Mà k ∈ ℤ nên k ∈ {0; 1}.
Vậy có 2 nghiệm của phương trình đã cho nằm trong khoảng \(\left( { - \frac{\pi }{2};\frac{{7\pi }}{3}} \right)\).
Đáp án: B