Tìm n là số tự nhiên biết
c)\(\left(2x-15\right)^5\)=\(\left(2x-15\right)^3\)
a) Tìm số tự nhiên n biết \(\left(n-1\right)^{n+11}-\left(n-1\right)^n=0\)
b) Tìm x biết: \(3\left(x-2\right)-4\left(2x+1\right)-5\left(2x+3\right)=50\)
c) Tìm x biết: \(\left|2x-3\right|=\left|2-x\right|\)
b) 3x - 6 - (8x + 4) - (10x + 15) = 50
=> 3x - 6 - 8x - 4 - 10x - 15 = 50
=> (3x - 8x - 10x) = 6+ 4 + 15 + 50
=> -15x = 75 => x = 75 : (-15) = -5
c) => 2x - 3 = 2 - x hoặc 2x - 3 = - (2 - x) (Vì 2 số có giá trị tuyệt đối bằng nhau thì chings bằng nhau hoặc đối nhau)
+) nếu 2x - 3 = 2 - x => 2x+ x = 2 + 3 => 3x = 5 => x = 5/3
+) nếu 2x - 3 = -(2 - x) => 2x - 3 = -2 + x => 2x - x = -2 + 3 => x = 1
Vậy x = 5/3 hoặc x = 1
a) (n-1)n+11-(n-1)n=0
(n-1)n(n-1)11-(n-1)n=0
(n-1)n[(n-1)11-1]=0
(n-1)n=0 hoặc (n-1)11-1=0
n-1=0 hoặc (n-1)11 =1
n=1 hoặc n-1 =1
n=1 hoặc n =2
tìm x thuộc n
\(\left(2x-15\right)^3=\left(2x-15\right)^5\)
giúp mik
\(\left(2x-15\right)^3=\left(2x-15\right)^5\\ \Rightarrow\left(2x-15\right)^2=1\\ \Rightarrow\left[{}\begin{matrix}2x-15=-1\\2x-15=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
giúp mik ik mik tic cho và nhớ cho thêm cả hướng dẫn
(2x−15)\(^3\)=(2x−15)\(^5\)
suy ra :(2x−15)\(^2\)=1
suy ra :2x−15= -1 Hoặc 2x - 15 = 1
2x = -1+15 HoĂc 2x = 1+15
2x = 14 hoĂc 2x = 16
x= 14: 2 hoĂc x= 16:2
x= 7 hoĂc x= 8
KL : x=7; x=8
Tìm số tự nhiên x, biết:
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
2/3.5+2/5.7+2/7.9+...+2/(2x+1)(2x+3)=2.15/93
1/3-1/5+1/5-1/7+...+1/2x+1-1/2x+3=10/31
1/3-1/2x+3=10/31
1/(2x+3)=1/93
2x+3=93
2x=90
x=45
Tìm số tự nhiên x, y, biết:
\(\left(x+5\right)\left(y-3\right)=15\)
\(\Rightarrow\left(x+5\right)\left(y-3\right)=1\cdot15=3\cdot5\)
Ta có
x+5 | 1 | 15 | 3 | 5 |
y-3 | 15 | 1 | 5 | 3 |
x | -4(ktm) | 10 | -2(ktm) | 0 |
y | 18 | 4 | 8 | 6 |
Vậy \(\left(x;y\right)=\left\{\left(10;4\right);\left(0;6\right)\right\}\)
Tìm x , biết :
\(a,\text{ }2^x\cdot4=128\)
\(b,\text{ }x^{15}=x\)
\(c,\text{ }\left(2x+1\right)^3=125\)
\(d,\text{ }\left(x-5\right)^4=\left(x-5\right)^6\)
\(e,\text{ }\left(2x-15\right)^5=\left(2x-15\right)^3\)
a) 2^x.2^4=128
=>2^x.2^2=2^7
=>2^x=2^7:2^2
=>2^x=2^5
=>x=5
b)x^15=x
=>x^15-x=0
=>x(x^16-x)=0
=>2 trượng hợp:x=0 và x^16-1=0(x^16-1=0 cx 2 th nha)
b),d),e) như nhau nha!
c) dễ rồi
\(a)2^x\cdot4=128\)
\(\Rightarrow2^x=\frac{128}{4}\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
\(b)x^{15}=x\)
\(\Rightarrow x^{15}-x=0\)
\(\Rightarrow x(x^{14}-1)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x^{14}-1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0\\x^{14}=1\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\x=1\end{cases}}\)
\(c)(2x+1)^3=125\)
\(\Rightarrow(2x+1)^3=5^3\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=5-1\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=4:2=2\)
\(d)(x-5)^4=(x-5)^6\)
\(\Rightarrow(x-5)^6-(x-5)^4=0\)
\(\Rightarrow(x-5)^4\cdot\left[(x-5)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}(x-5)^4=0\\(x-5)^2-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
\(e)(2x-15)^5=(2x-15)^3\)
\(\Rightarrow(2x-15)^5-(2x-15)^3=0\)
\(\Rightarrow(2x-15)^3-\left[(2x-15)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}(2x-15)^3=0\\(2x-15)^2-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\varnothing\\x=8\end{cases}}\)
Chúc bạn hoc tốt :>
\(a.2^x.4=128\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
\(b.x^{15}=x\)
\(\Rightarrow x^{15}-x=0\)
\(\Rightarrow x.\left(x^{14}-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^{14}=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(c.\left(2x+1\right)^3=125\)
\(\Rightarrow\left(2x+1\right)^3=5^3\)
\(\Rightarrow\left(2x+1\right)=5\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=\frac{4}{2}\)
\(\Rightarrow x=2\)
\(d.\left(x-5\right)^4=\left(x-5^6\right)\)
\(\Rightarrow\left(x-5\right)^6-\left(x-5\right)^4=0\)
\(\Rightarrow\left(x-5\right)^4.\left[\left(x-5\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^4=0\\\left(x-5\right)^2-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(e.\left(2x-15\right)^5=\left(2x-15\right)^4\)
\(\Rightarrow\left(2x-15\right)^5-\left(2x-15\right)^4=0\)
\(\Rightarrow\left(2x-15\right)^3.\left[\left(2x-15\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=7,5\\x=8\end{cases}}\)
Tìm số tự nhiên x , biết
\(2\cdot\left(x-1\right)^2=8\)
\(\left(2x+1\right)^3=125\)
\(\left(x-2\right)^5=243\)
\(5\left(x-4\right)^2-7=13\)
\(221-\left(3x+2\right)^3=96\)
Tìm \(x\in Q\), biết:
\(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-15=0\\2x-15=1\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x=15\\2x=16\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{15}{2}\\x=8\end{array}\right.\)
tìm số tự nhiên x biết:
\(\left(x-5\right)^5\)=\(\left(x-5\right)^{15}\)
(với x \(\ge\)5)
Đề
`<=> (x-5)^15 - (x-5)^5 = 0`
`<=> (x-5)^5 . ((x-5)^10 - 1) = 0`
`<=> (x-5)^5 = 0` hoặc `(x-5)^10 - 1 = 0`
`<=> x-5 = 0` hoặc `(x-5)^10 = 1`
`<=> x = 5` hoặc `x-5 = 1` hoặc `x - 5 = -1`
`<=> x = 5` hoặc `x = 6` hoặc `x = 4` (ko t/m)
Vậy `x = 5` hoặc `x = 6`
\(\left(x-5\right)^5=\left(x-5\right)^{15}\\ \Rightarrow\left(x-5\right)^5-\left(x-5\right)^{15}=0\\ \Rightarrow\left(x-5\right)^5\left[1-\left(x-5\right)^{10}\right]=0\\ \Rightarrow\left[{}\begin{matrix}\left(x-5\right)^5=0\\1-\left(x-5\right)^{10}=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\\left(x-5\right)^{10}=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x-5=1\\x-5=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\left(T/m\right)\\x=6\left(T/m\right)\\x=-4\left(L\right)\end{matrix}\right.\)
Tìm x , biết :
a. \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
b. \(2x^3-50x=0\)
c.\(5x^2-4\left(x^2-2x+1\right)-5=0\)
d. \(x^3-x=0\)
e. \(27x^3-27x^2+9x-1=1\)
a) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x+25=15\)
\(\Leftrightarrow24x=-10\)
hay \(x=-\dfrac{5}{12}\)
b) Ta có: \(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
c) Ta có: \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)
\(\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\)
d) Ta có: \(x^3-x=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
e) Ta có: \(27x^3-27x^2+9x-1=1\)
\(\Leftrightarrow\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3=1\)
\(\Leftrightarrow\left(3x-1\right)^3=1\)
\(\Leftrightarrow3x-1=1\)
\(\Leftrightarrow3x=2\)
hay \(x=\dfrac{2}{3}\)