Phân tích đa thức thành nhân tử
a) (x2+x)2+4x2+4x-12
b) 3x2+6xy+3y2-12
giúp mink với phải nộp bài
phân tích đa thức thành nhân tử
a/ x2 + 4x – 21
b/ 3x2 - 6xy + 3y2 – 3z2
c/ 2x2y + 12xy + 18y
a/ x2 + 4x - 21= x2 - 3x +4x - 21
= (x2+4x)-(3x+21)
= x(x+4)- 3(x+7)
= (x-3).(x+7)
b/ 3x2-6xy+3y2-3z2 = 3(x2- 2xy+y2- z2)
= 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2]
= 3(x + y – z)(x + y + z)
c/ 2x2y + 12xy + 18y = 2y(x2+6x+9)
Bài 9: Phân tích đa thức thành nhân tử
1, 5x2 – 10xy + 5y2 – 20z2 2, 16x – 5x2 – 3 3, x2 – 5x + 5y – y2 | 4, 3x2 – 6xy + 3y2 – 12z2 5, x2 + 4x + 3 6, (x2 + 1)2 – 4x2 7, x2 – 4x – 5
|
1.\(=5\left(x^2-2xy+y^2-4z^2\right)=5\left[\left(x+y\right)^2-\left(2z\right)^2\right]=5\left(x+y-2z\right)\left(x+y+2z\right)\)
2. \(=\left(-5x^2+15x\right)+\left(x-3\right)=-5x\left(x-3\right)+\left(x-3\right)=\left(1-5x\right)\left(x-3\right)\)
3. \(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\)
4.\(=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\)
5. \(=\left(x^2+x\right)+\left(3x+3\right)=x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x+3\right)\)
6. \(=\left(x^2-2x+1\right)\left(x^2+2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\)
7. \(=\left(x^2+x\right)-\left(5x+5\right)=x\left(x+1\right)-5\left(x+1\right)=\left(x-5\right)\left(x+1\right)\)
\(1,=5\left[\left(x-y\right)^2-4z^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\\ 2,=-5x^2+15x+x-3=\left(x-3\right)\left(1-5x\right)\\ 3,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\\ 4,=3\left[\left(x-y\right)^2-4z^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\\ 5,=x^2+x+3x+3=\left(x+3\right)\left(x+1\right)\\ 6,=\left(x^2+2x+1\right)\left(x^2-2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\\ 7,=x^2+x-5x-5=\left(x+1\right)\left(x-5\right)\)
phân tích đa thức sau thành phân tử
a) 3x4y - 12x2y3
b) x2 - y2 - 8y -16
c) x3 +3x2 + 4x +12
d) 3x2 - 6xy + 3y2 - 27
a) \(3x^4y-12x^2y^3=3x^2y\left(x^2-\left(2y\right)^2\right)=3x^2y\left(x+2y\right)\left(x-2y\right)\)
b) Sửa đề: \(x^2-y^2-8x+16=\left(x-4\right)^2-y^2=\left(x-4-y\right)\left(x-4+y\right)\)
c) \(x^3+3x^2+4x+12=x^2\left(x+3\right)+4\left(x+3\right)=\left(x^2+4\right)\left(x+3\right)\)
d) \(3x^2-6xy+3y^2-27=3\left(x^2-2xy+y^2-9\right)=3\left(\left(x-y^2\right)-3^2\right)=3\left(x-y-3\right)\left(x-y+3\right)\)
Phân tích các đa thức sau thành nhân tử
a,3x2 + 6xy + 3y2 - 3z
b,,x3 + x2y - x2z - xyz đ
`@` `\text {Ans}`
`\downarrow`
`a,`
`3x^2 + 6xy + 3y^2 - 3z`
`= 3*x^2 + 3*2xy + 3y^2 - 3z`
`= 3(x^2 + 2xy + y^2 - z)`
`b,`
`x^3 + x^2y - x^2z - xyz`
`= x(x + y)(x-z)`
Phân tích các đa thức sau thành nhân tử:
a) 3x4y - 12x2y3
b) x2 - y2 - 8y -16
c) x3 +3x2 + 4x +12
d) 3x2 - 6xy + 3y2 - 27
\(3x^4y-12x^2y^3=3x^2y\left(x^2-4y^2\right)=3x^2y\left(x-2y\right)\left(x+2y\right)\)
\(x^2-y^2-8y-16=x^2-\left(y^2+8y+16\right)=x^2-\left(y+4\right)^2=\left(x+y+4\right)\left(x-y-4\right)\)
\(x^3+3x^2+4x+12=x^2\left(x+3\right)+4\left(x+3\right)=\left(x^2+4\right)\left(x+3\right)\)
\(3x^2-6xy+3y^2-27=3\left[\left(x-y\right)^2-9\right]=3\left(x-y-3\right)\left(x-y+3\right)\)
1) Phân tích đa thức thành nhân tử
a) 3xy2 – 3x3 – 6xy +3x
b) 3x2 + 11x + 6
c) –x3 – 4xy2 + 4x2y +16x
d) xz – x2 – yz +2xy – y2
e) 4x2 – y2 – 6x + 3y
Giúp vs
Bài 1: Phân tích các đa thức sau thành nhân tử
a)x2-y2-2x+2y e)x4+4y4
b)x2(x-1)+16(1-x) f)x4-13x2+36
c)x2+4x-y2+4 g) (x2+x)2+4x2+4x-12
d)x3-3x2-3x+1 h)x6+2x5+x4-2x3-2x2+1
a.
$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$
b.
$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$
c.
$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$
d.
$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$
$=(x+1)(x^2-4x+1)$
e.
$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$
$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$
f.
$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$
$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$
g.
$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$
$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$
$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$
$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$
h.
$x^6+2x^5+x^4-2x^3-2x^2+1$
$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$
$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$
Bài 1: Phân tích đa thức thành nhân tử.
a) A = 3x2 + 6xy + 3y2 - 3z2
b) A = ( x + y )2 - 2 ( x + y ) + 1
c) A = x2 + y2 + 2xy + yz + zx
a)\(A=3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2-z^2\right)=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y-z\right)\left(x+y+z\right)\)b) \(A=\left(x+y\right)^2-2\left(x+y\right)+1=\left(x+y-1\right)^2\)
c) \(A=x^2+y^2+2xy+yz+zx=\left(x+y\right)^2+z\left(x+y\right)=\left(x+y\right)\left(x+y+z\right)\)
Phân tích thành nhân tử
2 + x )2 + 4x2 + 4x - 12
2 + 8x + 7)(x2 + 8x + 15) + 15
8x2 + 10x - 3
a: (x^2+x)^2+4x^2+4x-12
=(x^2+x)^2+4(x^2+x)-12
=(x^2+x+6)(x^2+x-2)
=(x^2+x+6)(x+2)(x-1)
b: =(x^2+8x)^2+22(x^2+8x)+105+15
=(x^2+8x)^2+22(x^2+8x)+120
=(x^2+8x+10)(x^2+8x+12)
=(x^2+8x+10)(x+2)(x+6)
c: =8x^2+12x-2x-3
=(2x+3)(4x-1)
Phân tích thành nhân tử
a,(x2 + x )2 + 4x2 + 4x - 12
b, (x2 + 8x + 7)(x2 + 8x + 15) + 15
c,8x2 + 10x - 3
a: =(x^2+x)^2+4(x^2+x)-12
=(x^2+x+6)(x^2+x-2)
=(x^2+x+6)(x+2)(x-1)
b: =(x^2+8x)^2+22(x^2+8x)+120
=(x^2+8x+12)(x^2+8x+10)
=(x+2)(x+6)(x^2+8x+10)
c: =8x^2+12x-2x-3
=(2x+3)(4x-1)