Tìm x để : x2 - \(\frac{2}{5}\)x < 0
Tìm m để phương trình (m - 1)x2 - 2mx + m + 2 = 0 có 2 nghiệm phân biệt x1 khác 0, x2 khác 0 thỏa mãn điều kiện \(\frac{x1}{x2}+\frac{x2}{x1}+\frac{5}{2}=0\)
GIÚP MÌNH VỚI< MÌNH ĐANG CẦN GẤP !!!
Trả lời:
Sorry, mk ms lớp 7,ko làm đc lớp 9!
-Tìm \(\Delta\)để tìm điều kiện cho phương trình có 2 nghiệm
-Tìm tích \(x_1_{ }x_2=\frac{c}{a}\)để tìm đk cho 2 nghiệm khác 0
- Tìm tổng và tích 2 nghiệm theo định lí Vi-ét
- \(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=\frac{-5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{-5}{2}\)
\(\Leftrightarrow\frac{\left(x1+x2\right)^2}{x1x2}=\frac{-1}{2}\)
Thay tích với tổng vào để tính nhé.Mình bận chỉ hướng dẫn ý chính. Có gì sai sót bỏ qua cho
Cho phương trình
\(x^2-2\left(m-2\right)x+\left(m^2+2m-3\right)=0\)
Tìm các giá trị của m để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn \(\frac{1}{x1}+\frac{1}{x2}=\frac{x1+x2}{5}\)
\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)
Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)
=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)
Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)
\(x^2-2\left(m-2\right)x+\left(m^2+2m-3\right)=0\) \(\left(#\right)\)
từ pt \(\left(#\right)\) ta có \(\Delta'=\left[-\left(m-2\right)\right]^2-m^2-2m+3\)
\(\Delta'=m^2-4m+4-m^2-2m+3\)
\(\Delta'=-6m+7\)
để pt \(\left(#\right)\) có 2 nghiệm \(x_1,x_2\) thì \(\Delta'>0\)
\(\Leftrightarrow-6m+7>0\)
\(\Leftrightarrow-6m>-7\)
\(\Leftrightarrow m< \frac{7}{6}\)
theo định lí vi et \(\hept{\begin{cases}x_1+x_2=2m-4\\x_1.x_2=m^2+2m-3\end{cases}}\)
theo bài ra ta có \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)
\(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)
\(\Leftrightarrow\left(x_1+x_2\right).5=\left(x_1.x_2\right)\left(x_1+x_2\right)\)
\(\Leftrightarrow\left(x_1+x_2\right).5-\left(x_1.x_2\right)\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(x_1+x_2\right).\left(5-x_1.x_2\right)=0\)
\(\Leftrightarrow\left(2m-4\right)\left(5-m^2-2m+3\right)=0\)
\(\Leftrightarrow\left(2m-4\right)\left(m^2+2m-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2m-4=0\left(1\right)\\m^2+2m-8=0\left(2\right)\end{cases}}\)
từ \(\left(1\right)\) ta có \(m=2\) ( KTM )
từ \(\left(2\right)\) ta có \(m^2+2m-8=0\) \(\left(3\right)\)
từ pt \(\left(3\right)\) ta có \(\Delta'=1^2-\left(-8\right)=1+8=9>0\Rightarrow\sqrt{\Delta'}=3\)
vì \(\Delta'>0\) nên pt \(\left(3\right)\) có 2 nghiệm phân biệt \(m_1=-2+3=1\) ; ( TM )
\(m_2=-2-3=-5\) ( TM )
vậy \(m_1=-5;m_2=1\) là các giá trị cần tìm
Cho pt : \(x^2-2\left(m-1\right)x+2m-5=0\)
a/ Tìm m để pt có nghiệm dương
b/ Gọi x1 , x2 là nghiệm của pt . tìm m nguyên dương để \(A=\left(\frac{x1}{x2}\right)^2+\left(\frac{x2}{x1}\right)^2\)là số nguyên
\(A=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2=\left[\frac{x_1^2+x^2_2}{x_1x_2}\right]^2-2=\left[\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right]^2-2\)
\(=\left[\frac{\left(2m-2\right)^2}{2m-5}-2\right]^2-2\)\(=\left(\frac{4m^2-8m+4}{2m-5}-2\right)^2-2=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)
A nguyên khi \(\left(2m-1+\frac{9}{2m-5}\right)^2\in Z\)
\(\Leftrightarrow B=2m-1+\frac{9}{2m-5}=\frac{8m^2-12m+14}{2m-5}\)\(=\sqrt{k}\) với k là một số nguyên dương.
\(\Rightarrow8m^2-12m+14=\sqrt{k}\left(2m-5\right)\)\(\Leftrightarrow8m^2-2\left(6+\sqrt{k}\right)m+14+5\sqrt{k}=0\text{ (1)}\)
(1) có nghiệm m khi \(\Delta'=\left(\sqrt{k}+6\right)^2-8\left(14+5\sqrt{k}\right)\ge0\)
\(\Leftrightarrow k-28\sqrt{k}-76\ge0\Leftrightarrow\sqrt{k}\le14-4\sqrt{17}
B1.Tìm các gt của m để pt:
x^2 - 2mx+m-2=0
Có 2no ple x1 x2 thỏa mãn M=\(\frac{2x1x2-\left(x1+x2\right)}{x1^2+x2^2-6x1x2}\)đạt GTNN
B2.Cho pt x^2-4x-m^2+3=0.Tìm m để pt có 2no x1,x2 thỏa mãn x1^2+3x1x2=10x2^2
B3.Tìm các gtrị của k để x^2 -(k-3)x-k+6=0.Có 1no dương duy nhất
B4.Cho pt : x^2+4x-3m+1=0.Tìm m để:
a)Pt có đúng 1no âm
b)Pt có 2no x1<x2<2
1) \(x^2-2mx+m-2=0\) (1)
pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\)
=> pt luôn có 2 nghiệm phân biệt x1, x2
Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)
\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)
xin 1slot sáng giải
Cho phương trình bậc hai ẩn x tham số m:
x2-2(m-1)x+m2+4m-5=0
Tìm m để phương trình có 2 nghiệm thỏa hệ thức \(\frac{2}{x1}+\frac{2}{x2}=3\)
Sử dụng định lí Vi-ét:
\(\frac{2}{x_1}+\frac{2}{x_2}=3\Leftrightarrow\frac{2\left(x_1+x_2\right)}{x_1.x_2}=3\)(*)
Tính ∆' tìm điều kiện của m để phương trình có 2 nghiệm phân biệt.
Sau đó bạn viết định lí Vi-ét và áp dụng và (*)
Kết hợp cả hai điều kiện lại là ra kết quả đúng.
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 1 nghiệm phân biệt
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 2 nghiệm phân biệt
Tìm m để pt : (x2- x - m)\(\sqrt{x}\) = 0 có 3 nghiệm phân biệt
ĐKXĐ: \(x\ge0\)
\(\left(x^2-x-m\right)\sqrt{x}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)
Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm
Do đó:
a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm
\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)
b. Để pt có 2 nghiệm pb
TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0
\(\Leftrightarrow m=0\)
TH2: (1) có 2 nghiệm trái dấu
\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)
\(\Rightarrow m\ge0\)
c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)
X^2-(2m+3)x+m^2+2m+3=0 a,Tìm m để ptrinh có 2 no trái dấu b,Tìm m để ptrinh có 2 no pb t/m 4x1x2=(x1+x2)^2-2(x1+x2)+5 c,Tìm 2 no pb x1=2 và x2>4
a: Để phương trình có hai nghiệm trái dấu thì
m^2+2m+3<0
=>m^2+2m+1+2<0
=>(m+1)^2+2<0(vô lý)
b:
Δ=(2m+3)^2-4(m^2+2m+3)
=4m^2+12m+9-4m^2-8m-12
=4m-3
Để phương trình có hai nghiệm phân biệt thì 4m-3>0
=>m>3/4
4x1x2=(x1+x2)^2-2(x1+x2)+5
=>4*(m^2+2m+3)=(2m+3)^2-2(2m+3)+5
=>4m^2+8m+12=4m^2+12m+9-4m-6+5
=>8m+12=8m-1
=>12=-1(vô lý)
Cho pt x2 - 2( m + 1)x + m2 - 4m +5 =0
a) Tìm m để pt có nghiệm x1 = 5; rồi tìm x2
Thay x=5 vào pt, ta được:
25-10(m+1)+m^2-4m+5=0
=>m^2-4m+30-10m-10=0
=>m^2-14m+20=0
=>\(m=7\pm\sqrt{29}\)
x1+x2=(2m+2)
=>x2+5=16+2 căn 29 hoặc x2+5=16-2 căn 29
=>x2=11+2căn 29 hoặc x2=11-2 căn 29
Tìm m để thỏa mãn pt x2-2(m-2)x-2m-5 =0 có 2 nghiệm x1,x2 thỏa mãn \(x^2_1+x_2^2=18\)
Áp dụng hệ thức vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1.x_2=-2m-5\end{matrix}\right.\)
Ta có:
\(x^2_1+x^2_2=18\)
\(\left(x_1+x_2\right)^2-2x_1.x_2=18\)
\(\left(2m-2\right)^2-2.\left(-2m-5\right)=18\)
\(4m^2-8m+4+4m+10-18=0\)
\(4m^2-4m+1=5\)
\(\left(2m-1\right)^2=5\)
\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{\sqrt{5}+1}{2}\\m=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)
cho phương trình x^2-2(m-2)x-5=0 tìm m để phương trình có 2 nghiệm x1;x2 thoả mãn ||x1|-|x2||=4
\(\Delta'=\left(m-2\right)^2+5>0;\forall m\)
\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1x_2=-5\end{matrix}\right.\)
\(\left|\left|x_1\right|-\left|x_2\right|\right|=4\)
\(\Leftrightarrow\left(\left|x_1\right|-\left|x_2\right|\right)^2=16\)
\(\Leftrightarrow x_1^2+x_2^2-2\left|x_1x_2\right|=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=16\)
\(\Leftrightarrow4\left(m-2\right)^2-2.\left(-5\right)-2.\left|-5\right|=16\)
\(\Leftrightarrow\left(m-2\right)^2=4\)
\(\Rightarrow\left[{}\begin{matrix}m-2=2\\m-2=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=4\\m=0\end{matrix}\right.\)