phân tích đa thức thành nhân tử:
x3(x2-7)2-36x
chứng minh biểu thức trên chia hết cho 210
Câu 1:(2 điểm) Phân tích thành nhân tử:
x2 + 4y2 + 4xy - 16
Câu 2:Phân tích đa thức thành nhân tử:
x3 + x2 + y3 + xy
Câu 1:
$x^2+4y^2+4xy-16=[x^2+(2y)^2+2.x.2y]-16$
$=(x+2y)^2-4^2=(x+2y-4)(x+2y+4)$
Câu 2:
$x^3+x^2+y^3+xy=(x^3+y^3)+(x^2+xy)$
$=(x+y)(x^2-xy+y^2)+x(x+y)=(x+y)(x^2-xy+y^2+x)$
Câu 1:
\(x^2+4y^2+4xy-16\)
\(=\left(x+2y\right)^2-16\)
\(=\left(x+2y+4\right)\left(x+2y-4\right)\)
Câu 2:
\(x^3+x^2+y^3+xy\)
\(=\left(x^3+y^3\right)\left(x^2+xy\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+x\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+x\right)\)
C1:x^2+4y^2+4xy-16
=[x^2+4xy+(2y)^2]-16
=(x+2y)^2-4^2
=(x+2y-4)(x+2y+4)
C2: x^3+x^2+y^3+xy
=(x^2+xy)+(x^3+y^3)
=x(x+y)+(x+y)(x^2-xy+y^2)
=(x+y)(x+x^2-xy+y^2)
bài này ra lâu r nhưng ngứa tay nên giải luôn=)))))
Phân tích đa thức thành nhân tử:
x3+2+3(x3-2)
\(=x^3+2+3x^3-6=4x^3-4=4\left(x^3-1\right)=4\left(x-1\right)\left(x^2+x+1\right)\)
Phân tích đa thức thành nhân tử:
x3+(y-x-2)2-(y-2)3
Ta có: \(x^3-\left(y-2\right)^3+\left(y-x-2\right)^2\)
\(=\left(x-y+2\right)\left(x^2+xy-2x+y^2-4y+4\right)+\left(x-y+2\right)^2\)
\(=\left(x-y+2\right)\left(x^2+xy-2x+y^2-4y+4+x-y+2\right)\)
\(=\left(x-y+2\right)\left(x^2+y^2+6+xy-x-5y\right)\)
phân tích đa thức thành nhân tử:
x3-y3+2x2+2xy
\(x^3-y^3+2x^2+2xy\)
\(=x\left(x^2-y^2+2x+2y\right)\)
\(=\)\(x\left[\left(x+y\right)\left(x-y\right)+2\left(x+y\right)\right]\)
\(=x\left(x+y\right)\left(x-y+2\right)\)
x^3 - y^3 + 2x^2 + 2xy
= x [ ( x^2 - y^2 ) + ( 2x + 2y ) ]
= x [ ( x + y ) ( x - y ) + 2 ( x + y ) ]
= x ( x + y ) ( x - y + 2 )
Phân tích đa thức thành nhân tử:
x3 - x + 3x2 - 3
\(=x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x+3\right)\left(x^2-1\right)=\left(x+3\right)\left(x-1\right)\left(x+1\right)\)
phân tích đa thức sau thành nhân tử:
x3 +2x2y+xy2-25xz2
= x(x^2 + 2xy + y^2 - 25z^2)
= x(x + y - 5z)(x + y + 5z)
Phân tích đa thức thành nhân tử
A= x3(x2-7)2-36x.
CMR A chia hết cho 210 với mọi x
A = x.[x^2.(x^2-7)^2-36]
= x.[(x^3-7x)^2-6^2]
= x.(x^3-7x-6).(x^3-7x+6)
= x.[(x^3+1)-(7x+7)].[(x^3-x)-(6x-6)]
= x.(x+1).(x^2-x-7).(x-1).(x^2+x-6)
= x.(x+1).(x-1).(x-2).(x+3).(x^2-x-7)
Tk mk nha
x3(x2−7)2−36x=x3(x4−14x2+49)−36xx3(x2−7)2−36x=x3(x4−14x2+49)−36x
=x7−14x5+49x3−36xx7−14x5+49x3−36x
=x7−x6+x6−x5−13x5+13x4−13x4+13x3+36x3−36xx7−x6+x6−x5−13x5+13x4−13x4+13x3+36x3−36x
=x6(x−1)+x5(x−1)−13x4(x−1)−13x3(x−1)+36x(x2−1)x6(x−1)+x5(x−1)−13x4(x−1)−13x3(x−1)+36x(x2−1)
=x(x−1)(x5+x4−13x3−13x2+36x+36)x(x−1)(x5+x4−13x3−13x2+36x+36)
=x(x−1)[x4(x+1)−13x2(x+1)+36(x+1)]x(x−1)[x4(x+1)−13x2(x+1)+36(x+1)]
=x(x−1)(x+1)(x4−13x2+36)x(x−1)(x+1)(x4−13x2+36)
đặt x^2 =a (a>=0) thì xét đa thức x4−13x2+36=a2−13a+36x4−13x2+36=a2−13a+36
xét Δ=b2−4ac=169−4.36=25Δ=b2−4ac=169−4.36=25
Δ>0Δ>0→phương trình có 2 nghiệm riêng biệt là ⎡⎣a1=−b+Δ√2a=13+52=9a2=−b−Δ√2a=13−52=4[a1=−b+Δ2a=13+52=9a2=−b−Δ2a=13−52=4(t/m a>=0)
vậy bt ban đầu :x(x−1)(x+1)(x2−4)(x2−9)x(x−1)(x+1)(x2−4)(x2−9)
=(x−3)(x−2)(x−1)x(x+1)(x+2)(x+3)
A = x.[x^2.(x^2-7)^2-36]
= x.[(x^3-7x)^2-6^2]
= x.(x^3-7x-6).(x^3-7x+6)
= x.[(x^3+1)-(7x+7)].[(x^3-x)-(6x-6)]
= x.(x+1).(x^2-x-7).(x-1).(x^2+x-6)
= x.(x+1).(x-1).(x-2).(x+3).(x^2-x-7)
Đề Bài:
a)Phân tích đa thức thành nhân tử:
x^3(x^2-7)^2-36x
b)Cmr:A=n^3(n^2-7)^2-36n chia hết cho 210 với mọi n thuộc N
a) Phân tích đa thức sau thành nhân tử: x^3(x^2-7)^2-36x
b) Cho biểu thức: A=n^3(n^2-7)^2-36n
Chứng minh Achia hết cho 5040 với mọi số tự nhiên n