Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khánh Khánh
Xem chi tiết
Diệu Anh
Xem chi tiết
hung le
17 tháng 12 2019 lúc 12:24

bạn lên app QuandA hỏi nha, gia sư sẽ cho bạn đáp án chính xác

Khách vãng lai đã xóa
hung le
17 tháng 12 2019 lúc 12:33

a) Ta có:

(5^2n+1) + (2^n+4) + (2^n+1) = (25^n).5 - 5.(2^n) + (2^n).( 5 + 2^4 +2) = 5.( 25^n - 2^n ) + 23.2^n chia hết cho 23. 
 

 
Khách vãng lai đã xóa
hung le
17 tháng 12 2019 lúc 12:34

link câu b: https://olm.vn/hoi-dap/detail/5937426943.html

Khách vãng lai đã xóa
Nguyễn Thị Yến
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2022 lúc 15:32

Bài 3: 

a: =>4n-2-3 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2;-1\right\}\)

b: =>-3 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2;-1\right\}\)

Nguyễn Minh Hoàng
Xem chi tiết
Gaming DemonYT
21 tháng 2 2021 lúc 20:52

a) Ta có:

(5^2n+1) + (2^n+4) + (2^n+1) = (25^n).5 - 5.(2^n) + (2^n).( 5 + 2^4 +2) = 5.( 25^n - 2^n ) + 23.2^n chia hết cho 23.  

Nguyễn Minh Hoàng
Xem chi tiết
Nguyễn Minh Hoàng
Xem chi tiết
Akai Haruma
25 tháng 2 2021 lúc 17:01

Lời giải:

a) 

\(5^{2n+1}+2^{n+4}+2^{n+1}=5.25^n+16.2^n+2.2^n\)

\(\equiv 5.2^n+16.2^n+2.2^n\pmod {23}\)

\(\equiv 23.2^n\equiv 0\pmod {23}\)

Ta có đpcm.

b) 

\(2^{2n+2}+24n+14\) hiển nhiên chia hết cho $2(1)$

Mặt khác:

Nếu $n=3k+1$:

$2^{2n+2}+24n+14=2^{6k+4}+72k+38$

$=16.2^{6k}+72k+38\equiv 16+72k+38=54+72k\equiv 0\pmod 9$

Nếu $n=3k$:

$2^{2n+2}+24n+14=2^{6k+2}+72k+14=4.2^{6k}+72k+14$

$\equiv 4+72k+14=18+72k\equiv 0\pmod 9$

Nếu $n=3k+2$:

$2^{2n+2}+24n+14=2^{6k+6}+72k+62\equiv 1+72k+62$

$\equiv 63+72k\equiv 0\pmod 9$

Vậy tóm lại $2^{2n+2}+24n+14$ chia hết cho $9$ (2)

Từ $(1);(2)\Rightarrow 2^{2n+2}+24n+14\vdots 18$ (đpcm)

 

Nguyễn Minh Hoàng
Xem chi tiết
Khúc Thị Ngân Hà
Xem chi tiết
Đinh Đức Hùng
15 tháng 2 2016 lúc 17:24

2n + 5 chia 2n + 3 dư 2

2n + 3 chia 2n + 1 dư 2

Không chứng minh được !

Yuu Shinn
15 tháng 2 2016 lúc 17:21

không được đâu vì các số này là số nguyên tố cùng nhau

Đặng Yến Nhi
Xem chi tiết
Nguyễn Thị Khánh Huyền
18 tháng 12 2015 lúc 19:54

a)8^7 - 2^18 = 8.(2^18) - 2^18 = 7 . 2^18 = 14 . 2 ^17 

Vì 14 luôn chia hết cho chính nó suy ra 14 . 2 ^17 cũng chia hết cho 14. 

Vậy biểu thức ban đầu luôn chia hết cho 14

b)79^2+79.11=79(79+11)=79.90=79.30.3 chia hết cho 30

c)số chia hết cho 6 là số chia hết cho 2 và 3 
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n 
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n 
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n

Tick nha