Có hay không số hữu tỉ x thỏa mãn :
\(\left(2x+3\right)^2+\left(3x-2\right)^2=0\)
Có hay không số hữu tỉ x thỏa mãn :
(2x+3)^2+(3x-2)^2=0
(2x + 3)2 + (3x - 2)2 = 0 mà\(\left(2x+3\right)^2\ge0;\left(3x-2\right)^2\ge0\Rightarrow\left(2x+3\right)^2+\left(3x-2\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}\left(2x+3\right)^2=0\Rightarrow2x+3=0\Rightarrow2x=-3\Rightarrow x=-1,5\\\left(3x-2\right)^2=0\Rightarrow3x-2=0\Rightarrow3x=2\Rightarrow x=\frac{2}{3}\end{cases}}\).
Vì\(-1,5\ne\frac{2}{3}\)nên ko có x để cả 2 số hạng bằng 0,tức ko có x thỏa mãn đẳng thức đề cho
\(\Rightarrow\hept{\begin{cases}2x+3=0\\3x-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\x=\frac{2}{3}\end{cases}\Rightarrow}x\in\varphi}\)
(2x+3)2+(3x-2)2=0
Mà \(\hept{\begin{cases}\left(2x+3\right)^2\ge0\\\left(3x-2\right)^2\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(2x+3\right)^2=0\\\left(3x-2\right)^2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x+3=0\\3x-2=0\end{cases}\Rightarrow}\hept{\begin{cases}2x=-3\\3x=2\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\x=\frac{2}{3}\end{cases}}\)
Không tồn tại giá trị của x thỏa mãn (vì x k thể tồn tại 2 giá trị cùng lúc)
Tìm các số hữu tỉ x, y thỏa mãn :
\(2016.\left|2x-27\right|^{2017}+2017.\left(3y+10\right)^{2018}=\left(-1\right)^{2019}+\left(-2020\right)^0\)
Giúp mk với , bài này khó quá
Tìm các giá trị của x thỏa mãn \(\left|x-1\right|+\left|2x-2\right|+\left|3x-3\right|=6\)
(Có lời giải)
\(\left|x-1\right|+\left|2x-2\right|+\left|3x-3\right|=6\left(1\right)\)
Xét : \(x-1=0\Leftrightarrow x=1;x-1< 0\Leftrightarrow x< 1;x-1>0\Leftrightarrow x>1\)
\(2x-2=0\Leftrightarrow x=1;2x-2< 0\Leftrightarrow x< 1;2x-2>0\Leftrightarrow x>1\)
\(3x-3=0\Leftrightarrow x=1;3x-3< 0\Leftrightarrow x< 1;3x-3>0\Leftrightarrow x>1\)
Ta có bảng xét dấu các đa thức x-1 ; 2x-2 ; 3x-3 sau :
X | 1 |
x-1 | - 0 + |
2x-2 | - 0 + |
3x-3 | - 0 + |
Xét khoảng \(x< 1\) ta có :
(1) \(\Leftrightarrow1-x+2-2x+3-3x=6\Leftrightarrow6-6x=6\Leftrightarrow x=0\) (Giá trị này thuộc khoảng đang xét )
Xét khoảng \(x>0\) ta có :
(1) \(\Leftrightarrow x-1+2x-2+3x-3=6\Leftrightarrow6x-6=6\Leftrightarrow x=2\) ( Giá trị này thuộc khoảng đang xét )
Vậy \(x=0\) và \(x=2\) thỏa mãn
Tìm tất cả các giá trị nguyên của tham số m để phương trình:
\(mx^2-\left(1-2m\right)x+m-2=0^{\left(1\right)}\) có nghiệm là số hữu tỉ
(1-2m)2 - 4m(m-2) >0
1-4m +4m2-4m2 +8m >0
4m +1 >0
m > -1/4
với m> -4 thì đa thức co nghiệm là số hữu tỷ, không lẽ bn học trg chuyên mà không hiểu?
Tìm tất cả các giá trị nguyên của tham số m để phương trình:
\(mx^2-\left(1-2m\right)x+m-2=0^{\left(1\right)}\) có nghiệm là số hữu tỉ
số x thỏa mãn x:
\(\left(\dfrac{1}{3}\right)^2=\left(\dfrac{1}{3}\right)^3\)
Cho hàm số \(f:Z^+\rightarrow R^+\) thỏa mãn các điều kiện
\(1.f_{\left(x\right)}=0\leftrightarrow x=0\)
\(2.f_{\left(xy\right)}=f_{\left(x\right)}f_{\left(y\right)}\left(\forall x,y\in Z^+\right)\)
\(3.f_{\left(x+y\right)}=f_{\left(x\right)}+f_{\left(y\right)}\left(\forall x,y\in Z^+\right)\)
Gọi \(n_o\) là số nguyên dương bé nhất trong các số nguyên dương m thõa mãn điều kiện \(f_{\left(m\right)}>1\). Chứng minh rằng với mọi số nguyên dương n ta đều có bất đẳng thức sau :
\(f_{\left(n\right)}< \dfrac{\left(f_{\left(n_o\right)}\right)^{1+\left[log_{n_o}n\right]}}{f_{\left(n_o\right)}-1}\)
\(\left[a\right]\) là phần nguyên của số thực \(a\)
1_Giải phương trình: \(\frac{\left|5-3x\right|-\left|x-1\right|}{x-3+\left|3+2x\right|}=4\)
2_Tìm số nguyên x, y thỏa mãn: \(x^2+xy+y^2=x^2y^2\)
bạn nào giúp mừn với nè!!!
Bài 1. Cho các số a, b thỏa mãn \(a^2+b^2=ab+3\left(a+b\right)\)Tính giá trị \(\left(a-2\right)^{2018}+\left(b-2\right)^{2019}\)
Bài 2.Tìm các số nguyên x, y thỏa mãn \(x^2+2y^2< 2xy+4y-3\)