\(\left|x-1\right|+\left|2x-2\right|+\left|3x-3\right|=6\left(1\right)\)
Xét : \(x-1=0\Leftrightarrow x=1;x-1< 0\Leftrightarrow x< 1;x-1>0\Leftrightarrow x>1\)
\(2x-2=0\Leftrightarrow x=1;2x-2< 0\Leftrightarrow x< 1;2x-2>0\Leftrightarrow x>1\)
\(3x-3=0\Leftrightarrow x=1;3x-3< 0\Leftrightarrow x< 1;3x-3>0\Leftrightarrow x>1\)
Ta có bảng xét dấu các đa thức x-1 ; 2x-2 ; 3x-3 sau :
X | 1 |
x-1 | - 0 + |
2x-2 | - 0 + |
3x-3 | - 0 + |
Xét khoảng \(x< 1\) ta có :
(1) \(\Leftrightarrow1-x+2-2x+3-3x=6\Leftrightarrow6-6x=6\Leftrightarrow x=0\) (Giá trị này thuộc khoảng đang xét )
Xét khoảng \(x>0\) ta có :
(1) \(\Leftrightarrow x-1+2x-2+3x-3=6\Leftrightarrow6x-6=6\Leftrightarrow x=2\) ( Giá trị này thuộc khoảng đang xét )
Vậy \(x=0\) và \(x=2\) thỏa mãn