Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Khánh Linh
5 tháng 11 2021 lúc 20:56

Mn giúp mk với ah, mk dg lm toán nâng cao

Bùi Thị Quỳnh	Hoa
16 tháng 11 2021 lúc 21:49
1018 , 1019 1020
Khách vãng lai đã xóa
Mrbeast6000
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 7 2023 lúc 2:33

2: FK vuôg góc BE; AE vuông góc BE

=>FK//AE

Chứng minh tương tự, ta được AF//EK

=>AFKE là hbh

=>AF=EK

=>AF/EC=EK/EC

ΔCEK đồng dạng với ΔCAM

=>EK/EC=AM/AC

=>AF/EC=AM/AC

ΔAFB đồng dạng với ΔCEB

=>góc ABF=góc CBE

c: AM/AC=AF/EC=AB/BC

=>AM/AC=AB/BC

=>ΔAMB đồng dạng với ΔCAB

=>góc ABC=góc ABM

=>BA là phân giác của góc MBC

 

Phạm
Xem chi tiết
camcon
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 10 2023 lúc 21:16

a: \(=\dfrac{-\dfrac{1}{2}\left[cos\left(a+b+a-b\right)-cos\left(a+b-a+b\right)\right]}{cos^2b-cos^2a}\)

\(=\dfrac{-\dfrac{1}{2}\cdot\left[cos2a-cos2b\right]}{\dfrac{1-cos2b}{2}-\dfrac{1-cos2a}{2}}\)

\(=\dfrac{-\dfrac{1}{2}\cdot\left(cos2a-cos2b\right)}{\dfrac{1-cos2b-1+cos2a}{2}}=\dfrac{-\dfrac{1}{2}\cdot\left(cos2a-cos2b\right)}{\dfrac{1}{2}\cdot\left(cos2a-cos2b\right)}=-1\)

c: \(T=\dfrac{sina+sinb\cdot\left(cosa\cdot cosb-sina\cdot sinb\right)}{cosa-sinb\cdot\left(sina\cdot cosb+sinb\cdot cosa\right)}-tan\left(a+b\right)\)

\(=\dfrac{sina+sinb\cdot cosa\cdot cosb-sin^2b\cdot sina}{cosa-sinb\cdot sina\cdot cosb-sin^2b\cdot cosa}-tan\left(a+b\right)\)

\(=\dfrac{sina\left(1-sin^2b\right)+sinb\cdot cosa\cdot cosb}{cosa\left(1-sin^2b\right)-sinb\cdot sina\cdot cosb}\)-tan(a+b)

\(=\dfrac{sina\cdot cos^2b+sinb\cdot cosa\cdot cosb}{cosa\cdot cos^2b-sinb\cdot sina\cdot cosb}-tan\left(a+b\right)\)

\(=\dfrac{sina\cdot cosb+sinb\cdot cosa}{cosa\cdot cosb-sina\cdot sinb}-tan\left(a+b\right)\)

\(=\dfrac{sin\left(a+b\right)}{cos\left(a+b\right)}-tan\left(a+b\right)=0\)

 

Nhu ngoc
Xem chi tiết
Đỗ Thanh Hải
1 tháng 6 2021 lúc 21:42

khó load ghê ta

Hoàng Hạnh Nguyễn
1 tháng 6 2021 lúc 22:22

Complete the sentences using the words in brackets without changing the original meaning. Do not change the words given

1. The issue of the corona virus was so important that we could not ignore it (such)
-> The issue of the coronavirus was of...such importance that we could take it into... consideration.
2. He’s not likely to arrive before nightfall (chances)
-> The...chances of his arriving before nightfall are..slim.
3. In my opinion, I would be happy to employ the company next time. (hesitation)
-> If I...were to be asked, I would ...the company next time. (mình nghĩ là if I were to be asked, ko biết if I were you ở đây có dùng đc ko nhỉ)
4. This is the first time I’ve seen him panic. (head)
-> Never...have I seen him losing his head...before.
5. He was so angry that his face changed color. (go)
-> His.......face. 

mấy câu trên mình cũng ko chắc lắm đâu -.- Còn câu 5 mới nghĩ ra đc idiom go up the wall = angry mà chưa biết ghép vào câu như nào nữa

ancutdi
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 9 2021 lúc 0:14

\(A=\dfrac{2^{13}\cdot3^7}{2^{15}\cdot3^2\cdot9^2}=\dfrac{2^{13}\cdot3^7}{2^{15}\cdot3^6}=\dfrac{3}{4}\)

\(C=27\cdot\left(-\dfrac{3}{2}\right)^{-5}\cdot\left(-\dfrac{2}{5}\right)^{-4}:\left(\dfrac{2}{125}\right)^{-1}\)

\(=27\cdot\dfrac{-32}{243}\cdot\dfrac{625}{16}\cdot\dfrac{2}{125}\)

\(=\dfrac{-32}{9}\cdot\dfrac{1}{8}\cdot5\)

\(=-\dfrac{20}{9}\)

Nguyễn Linh
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 3 2022 lúc 21:54

4.

\(\lim\limits_{x\rightarrow8}f\left(x\right)=\lim\limits_{x\rightarrow8}\dfrac{\sqrt[3]{x}-2}{x-8}=\lim\limits_{x\rightarrow8}\dfrac{x-8}{\left(x-8\right)\left(\sqrt[3]{x^2}+2\sqrt[3]{x}+4\right)}=\lim\limits_{x\rightarrow8}\dfrac{1}{\sqrt[3]{x^2}+2\sqrt[3]{x}+4}\)

\(=\dfrac{1}{4+4+4}=\dfrac{1}{12}\)

\(f\left(8\right)=3.8-20=4\)

\(\Rightarrow\lim\limits_{x\rightarrow8}f\left(x\right)\ne f\left(8\right)\)

\(\Rightarrow\) Hàm gián đoạn tại \(x=8\)

5.

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt[]{1+2x}-1+1-\sqrt[3]{1+3x}}{x}=\lim\limits_{x\rightarrow0^+}\dfrac{\dfrac{2x}{\sqrt[]{1+2x}+1}-\dfrac{3x}{1+\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}}{x}\)

\(=\lim\limits_{x\rightarrow0^+}\left(\dfrac{2}{\sqrt[]{1+2x}+1}-\dfrac{3}{1+\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}\right)=\dfrac{2}{1+1}-\dfrac{3}{1+1+1}=0\)

\(f\left(0\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(3x^2-2x\right)=0\)

\(\Rightarrow\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=f\left(0\right)\)

\(\Rightarrow\) Hàm liên tục tại \(x=0\)

Nguyễn Việt Lâm
4 tháng 3 2022 lúc 21:59

6.

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt[]{4x+1}-\sqrt[3]{6x+1}}{x^2}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt[]{4x+1}-\left(2x+1\right)+\left(2x+1-\sqrt[3]{6x+1}\right)}{x^2}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{\dfrac{-x^2}{\sqrt[]{4x+1}+2x+1}+\dfrac{x^2\left(8x+12\right)}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{6x+1}+\sqrt[3]{\left(6x+1\right)^2}}}{x^2}\)

\(=\lim\limits_{x\rightarrow0^+}\left(\dfrac{-1}{\sqrt[]{4x+1}+2x+1}+\dfrac{8x+12}{\left(2x+1\right)^2+\left(2x+1\right)\sqrt[3]{6x+1}+\sqrt[3]{\left(6x+1\right)^2}}\right)\)

\(=\dfrac{-1}{1+1}+\dfrac{12}{1+1+1}=\dfrac{7}{2}\)

\(f\left(0\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(2-3x\right)=2\)

\(\Rightarrow\lim\limits_{x\rightarrow0^+}f\left(x\right)\ne\lim\limits_{x\rightarrow0^-}f\left(x\right)\)

\(\Rightarrow\) Hàm gián đoạn tại \(x=0\)

Nguyễn Việt Lâm
4 tháng 3 2022 lúc 22:03

7.

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt[]{1+2x}-\left(x+1\right)+\left(x+1-\sqrt[3]{1+3x}\right)}{x^2}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{\dfrac{-x^2}{\sqrt[]{1+2x}+x+1}+\dfrac{x^2\left(x+3\right)}{\left(x+1\right)^2+\left(x+1\right)\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}}{x^2}\)

\(=\lim\limits_{x\rightarrow0^+}\left(\dfrac{-1}{\sqrt[]{1+2x}+x+1}+\dfrac{x+3}{\left(x+1\right)^2+\left(x+1\right)\sqrt[3]{1+3x}+\sqrt[3]{\left(1+3x\right)^2}}\right)\)

\(=\dfrac{-1}{1+1}+\dfrac{3}{1+1+1}=1\)

\(f\left(0\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(2x+3\right)=3\)

\(\Rightarrow\lim\limits_{x\rightarrow0^+}f\left(x\right)\ne\lim\limits_{x\rightarrow0^-}f\left(x\right)\)

\(\Rightarrow\) Hàm gián đoạn tại \(x=0\)

Toge is my mine:D
Xem chi tiết

Bài 1:

a, \(\dfrac{2}{3}\) + \(\dfrac{1}{5}\)\(\dfrac{10}{7}\)

\(\dfrac{2}{3}\) + \(\dfrac{2}{7}\) 

\(\dfrac{20}{21}\)

b, \(\dfrac{7}{12}\) - \(\dfrac{27}{7}\)\(\dfrac{1}{18}\)

\(\dfrac{7}{12}\) - \(\dfrac{3}{14}\)

\(\dfrac{31}{84}\)

c, \(\dfrac{3}{10}\)\(\dfrac{-5}{6}\) - \(\dfrac{1}{8}\)

= - \(\dfrac{1}{4}\) - \(\dfrac{1}{8}\)

= - \(\dfrac{3}{8}\)

d, - \(\dfrac{4}{9}\)\(\dfrac{8}{3}\) + \(\dfrac{1}{18}\)

= - \(\dfrac{1}{6}\) + \(\dfrac{1}{18}\)

= - \(\dfrac{1}{9}\)

e,  {[(\(\dfrac{1}{2}\) - \(\dfrac{2}{3}\))2 : 2 ] - 1}. \(\dfrac{4}{5}\)

= {[ (-\(\dfrac{1}{6}\))2 : 2] - 1}. \(\dfrac{4}{5}\)

= { [\(\dfrac{1}{36}\) : 2] - 1}. \(\dfrac{4}{5}\)

= { \(\dfrac{1}{72}\) - 1}. \(\dfrac{4}{5}\)

=- \(\dfrac{71}{72}\).\(\dfrac{4}{5}\)

= -\(\dfrac{71}{90}\)

g, [(\(\dfrac{32}{25}\) +1): \(\dfrac{2}{3}\)].(\(\dfrac{3}{4}\) - \(\dfrac{1}{8}\))2

= [ \(\dfrac{57}{25}\) : \(\dfrac{2}{3}\)].(\(\dfrac{5}{8}\))2

\(\dfrac{171}{50}\)\(\dfrac{25}{64}\)

\(\dfrac{171}{28}\)

Phạm Lê Thúy Anh
Xem chi tiết