Gia trị lớn nhất của biểu thức P= $\sqrt{9-5x^2}$
Gia trị lớn nhất của biểu thức P= 1+$\frac{9}{\sqrt{x^2+1}}$ là...
Ta có
\(x^2\ge0\) với mọi x
\(\Rightarrow x^2+1\ge1\)
\(\Rightarrow\sqrt{x^2+1}\ge1\)
\(\Rightarrow\frac{1}{\sqrt{x^2+1}}\le1\)
\(\Rightarrow\frac{9}{\sqrt{x^2+1}}\le9\)
\(\Rightarrow1+\frac{9}{\sqrt{x^2+1}}\le10\)
Dấu " = " xảy ra khi x=0
Vậy MAXP=10 khi x=0
Để P đạt GTLN
\(\Rightarrow\sqrt{x^2+1}\) đạt GTNN
Ta thấy:\(x^2\ge0\)
\(\Rightarrow x^2+1\ge0+1=1\)
\(\Rightarrow\sqrt{x^2+1}\ge\sqrt{1}=1\)
Khi đó GTLN của P là \(1+\frac{9}{1}=1+9=10\) khi x=0
Vậy MaxP=10 khi x=0
Nhận xét : P > 0
Để P đạt giá trị lớn nhất thì \(\frac{9}{\sqrt{x^2+1}}\) đạt giá trị lớn nhất \(\Leftrightarrow\sqrt{x^2+1}\) đạt giá trị nhỏ nhất
Ta có : \(x^2+1\ge1\Leftrightarrow\sqrt{x^2+1}\ge1\)
=> Min \(\left(\sqrt{x^2+1}\right)=1\Leftrightarrow x=0\)
Vậy Max P \(=1+\frac{9}{1}=10\) <=> x = 0
Tìm giá trị lớn nhất của biểu thức A=\(\frac{\sqrt{x-9}}{5x}\)
ĐKXĐ: \(x\ge9\)
\(A=\frac{\sqrt{x-9}}{5x}=\frac{\sqrt{\frac{x-9}{3}}3-3}{5x}\le\frac{\frac{1}{2}\left(\frac{x-9}{3}+3\right)}{5x}=\frac{\frac{x-9+9}{3}}{10x}=\frac{1}{30}\)
(dấu "=" xảy ra \(\Leftrightarrow\frac{x-9}{3}=3\Leftrightarrow x=18\))
Vậy \(A_{max}=\frac{1}{30}\) (khi và chỉ khi x = 18)
Tìm giá trị lớn nhất của biểu thức sau:
\(P=\dfrac{5x+7}{\sqrt{3x-2}}\) với \(x>\dfrac{2}{3}\)
Cho biểu thức : A= \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\) , với x ≥ 0 và x ≠ 9
a) Rút gọn biểu thức A.
b) Tìm gi trị của x để A = \(\dfrac{1}{3}\).
c) Tìm giá trị lớn nhất của biểu thức A.
a: \(A=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}=\dfrac{-3\sqrt{x}-9}{x-9}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-3}{\sqrt{x}-3}\)
b: A=1/3
=>\(\dfrac{-3}{\sqrt{x}-3}=\dfrac{1}{3}\)
=>căn x-3=-9
=>căn x=-6(loại)
c: căn x-3>=-3
=>3/căn x-3<=-1
=>-3/căn x-3>=1
Dấu = xảy ra khi x=0
Tìm giá trị lớn nhất của biểu thức :
B=9-/5x\
Ta có :
/5x\\(\ge0\) \(\Rightarrow\) -/5x\\(\le0\)
\(\Rightarrow\)9-/5x\\(\le9\)
Vậy Max B =9\(\Leftrightarrow x=0\)
tìm giá trị nhỏ nhất của các biểu thức sau:
a A=\(\dfrac{\sqrt{x-9}}{5x}\)
b B=\(\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
b, đk: \(x\ge1,y\ge2,z\ge3\)
\(=>B=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)
đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{y-2}=b\\\sqrt{z-3}=c\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}x=a^2+1\\y=b^2+1\\z=c^2+1\end{matrix}\right.\)\(=>a\ge0,b\ge0,c\ge0\)
B trở thành \(\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}+\dfrac{c}{c^2+1}\)
\(=\dfrac{a^{ }}{a^2+1}+\dfrac{a^2+1}{4}+\dfrac{b}{b^2+1}+\dfrac{b^2+1}{4}+\dfrac{c}{c^2+1}+\dfrac{c^2+1}{4}\)
\(-\left(\dfrac{a^2+b^2+c^2+3}{4}\right)\ge\sqrt{a}+\sqrt{b}+\sqrt{c}-\dfrac{a^2+b^2+c^2}{4}\)\(=0\)
dấu"=" xảy ra<=>\(a=0,b=0,c=0< =>x=1,y=2,z=3\)
Chắc bạn ghi nhầm đề, tìm GTLN mới đúng, chứ GTNN của các biểu thức này đều hiển nhiên bằng 0
\(A=\dfrac{3.\sqrt{x-9}}{15x}\le\dfrac{3^2+x-9}{30x}=\dfrac{1}{30}\)
\(A_{max}=\dfrac{1}{30}\) khi \(x=18\)
\(B=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}=\dfrac{1.\sqrt{x-1}}{x}+\dfrac{\sqrt{2}.\sqrt{y-2}}{\sqrt{2}y}+\dfrac{\sqrt{3}.\sqrt{z-3}}{\sqrt{3}z}\)
\(B\le\dfrac{1+x-1}{2x}+\dfrac{2+y-2}{2\sqrt{2}y}+\dfrac{3+z-3}{2\sqrt{3}z}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(2;4;6\right)\)
đề bài là tìm gt lớn nhất nhé mọi người,tớ ghi nhầm
Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức:
M=\(\sqrt{9-x^2}\)
Với \(x\ge-\frac{1}{2}\). TÌm giá trị lớn nhất của biểu thức:
\(A=\sqrt{2x^2+5x+2}+2\sqrt{x+3}-2x\)
Cho biểu thức A = \(\frac{\sqrt{x}}{\sqrt{x}+3}\)+\(\frac{2\sqrt{x}}{\sqrt{x-3}}\)-\(\frac{3x+9}{x-9}\)
1) rút gọn biểu thức A
2) Tìm giá trị của biểu thức A
3) tìm giá trị lớn nhất của biểu thức A
Kiếm việc làm nào :)
1) ĐK \(x\ne\pm9\)
\(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3x+9}{x-9}=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\frac{2\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}+\frac{3x+9}{x-9}\)
\(=\frac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{3}{\sqrt{x}+3}\)
2) ?
3) Ta có
\(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+3\ge3\)
\(\Rightarrow A=\frac{3}{\sqrt{x}+3}\le1\)
Dấu "=" xảy ra khi x = 0