Ta có
\(x^2\ge0\) với mọi x
\(\Rightarrow x^2+1\ge1\)
\(\Rightarrow\sqrt{x^2+1}\ge1\)
\(\Rightarrow\frac{1}{\sqrt{x^2+1}}\le1\)
\(\Rightarrow\frac{9}{\sqrt{x^2+1}}\le9\)
\(\Rightarrow1+\frac{9}{\sqrt{x^2+1}}\le10\)
Dấu " = " xảy ra khi x=0
Vậy MAXP=10 khi x=0
Để P đạt GTLN
\(\Rightarrow\sqrt{x^2+1}\) đạt GTNN
Ta thấy:\(x^2\ge0\)
\(\Rightarrow x^2+1\ge0+1=1\)
\(\Rightarrow\sqrt{x^2+1}\ge\sqrt{1}=1\)
Khi đó GTLN của P là \(1+\frac{9}{1}=1+9=10\) khi x=0
Vậy MaxP=10 khi x=0
Nhận xét : P > 0
Để P đạt giá trị lớn nhất thì \(\frac{9}{\sqrt{x^2+1}}\) đạt giá trị lớn nhất \(\Leftrightarrow\sqrt{x^2+1}\) đạt giá trị nhỏ nhất
Ta có : \(x^2+1\ge1\Leftrightarrow\sqrt{x^2+1}\ge1\)
=> Min \(\left(\sqrt{x^2+1}\right)=1\Leftrightarrow x=0\)
Vậy Max P \(=1+\frac{9}{1}=10\) <=> x = 0