Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Trung Hiếu

Cho biểu thức
\(P=\left(\frac{1}{\sqrt{x}-1}+\frac{11}{x+\sqrt{x}+1}-\frac{34}{1-x\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\right)\)
a)Tìm điều kiện của x để P xác định, rút gọn P?
b) tính giá trị của P khi \(x=3-2\sqrt{2}\)
c)tìm giá trị nhỏ nhất của biểu thức P? Giá trị đó đạt được khi x bằng bao nhiêu?

Nguyễn Lê Phước Thịnh
3 tháng 2 2022 lúc 11:33

a: \(P=\dfrac{x+\sqrt{x}+1+11\sqrt{x}-11+34}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{x+12\sqrt{x}+24}{\sqrt{x}+2}\)

b: Thay \(x=3-2\sqrt{2}\) vào P, ta được:

\(P=\dfrac{3-2\sqrt{2}+12\left(\sqrt{2}-1\right)+24}{\sqrt{2}-1+2}\)

\(=\dfrac{27-2\sqrt{2}+12\sqrt{2}-12}{\sqrt{2}+1}=5+5\sqrt{2}\)


Các câu hỏi tương tự
Lee Je Yoon
Xem chi tiết
Tung Nguyễn
Xem chi tiết
Ly
Xem chi tiết
satoh nguyễn
Xem chi tiết
Ngọc Huyền
Xem chi tiết
Linh Chi
Xem chi tiết
Vũ Hạ Nguyên
Xem chi tiết
Ngọc Huyền
Xem chi tiết
Xuân Trà
Xem chi tiết