Chứng minh rằng A= x^2-2x+2>0 với mọi x và tìm GNNN của A
a ) Chứng minh rằng : A = x2 - 2x + 2 > 0 với mọi x thuộc R
b ) Chứng minh rằng x - x2 - 3 < 0 với mọi x thuộc R
a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)
b) \(x-x^2-3=-\left(x^2-x+3\right)\)
\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)
x²-2x+2=(x²-2x+1)+1=( x-1)²+1
Mà (x-1)²≥0 với mọi x
=> (x-1)²+1>0 với mọi x
=> x²-2x+2>0 với mọi x
4. Tìm giá trị lớn nhất của các biểu thức a. A = 5 – 8x – x2 b. B = 5 – x2 + 2x – 4y2 – 4y 5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c b. Tìm a, b, c biết a2 – 2a + b2 + 4b + 4c2 – 4c + 6 = 0 6. Chứng minh rằng: a. x2 + xy + y2 + 1 > 0 với mọi x, y b. x2 + 4y2 + z2 – 2x – 6z + 8y + 15 > 0 Với mọi x, y, z 7. Chứng minh rằng: x2 + 5y2 + 2x – 4xy – 10y + 14 > 0 với mọi x, y.
Chứng minh rằng -x2+2x-3 < 0 với mọi x
Tìm GTLN A = 7 - x - x2
1/ -x2 + 2x - 3 = -(x2 - 2x + 3) = -(x2 - 2 . x + 12 + 2) = -[ (x - 2)2 + 2 ] = -(x - 2)2 - 2
Mà: \(-\left(x-2\right)\le0\Rightarrow-\left(x-2\right)-2\le-2< 0\)
Vậy: -x2 + 2x - 3 < 0 với mọi x.
2/ Ta có: A = 7 - x - x2 = -x2 - x + 7 = -(x2 + x - 7) = -(x2 + 2 . 0,5x + 0,52 - 7,25) = -[ (x + 0,5)2 - 7,25 ] = -(x + 0,5)2 + 7,25 \(\le\)7,25
Đẳng thức xảy ra khi: (x + 0,5)2 = 0 => x + 0,5 = 0 => x = -0,5
Vậy giá trị lớn nhất của A là 7,25 khi x = -0,5
1.Chứng minh rằng:
a) A= -x^2+2x-2<0 với mọi x
b) tìm giá trị lớn nhất của A
2. Rút gọn và tính giá trị sau tại x=-0,01
M=(x^2-x+1)(x+1)-(x-1)(x^2+x+1)+x
Chú ý rằng nếu c > 0 thì a + b 2 + c và a + b 2 + c đều dương với mọi a, b. Áp dụng điều này chứng minh rằng:
Với mọi giá trị của x khác ± 1, biểu thức:
x + 2 x - 1 x 3 2 x + 2 + 1 - 8 x + 7 2 x 2 - 2 luôn luôn có giá trị dương.
Điều kiện x ≠ 1 và x ≠ - 1
Ta có:
Biểu thức dương khi x 2 + 2 x + 3 > 0
Ta có: x 2 + 2 x + 3 = x 2 + 2 x + 1 + 2 = x + 1 2 + 2 > 0 với mọi giá trị của x.
Vậy giá trị của biểu thức dương với mọi giá trị x ≠ 1 và x ≠ - 1
a) Chứng minh rằng: \(2x^2-8x+13>0\)với mọi giá trị của x
b) CMR:\(-2+2x-x^2< 0\) với mọi giá trị của x
a) Ta có \(2x^2-8x+13=2x^2-8x+8+5\)
\(=2\left(x^2-4x+4\right)+5\)
\(=2\left(x-2\right)^2+5\ge5\forall x\)
Giả sử trước khi làm nhé
\(a)\)\(2x^2-8x+13>0\)
\(\Leftrightarrow\)\(4x^2-16x+26>0\)
\(\Leftrightarrow\)\(\left(4x^2-16+16\right)+10>0\)
\(\Leftrightarrow\)\(\left(2x-4\right)^2+10\ge10>0\) ( luôn đúng )
Vậy ...
\(b)\)\(-2+2x-x^2< 0\)
\(\Leftrightarrow\)\(x^2-2x+2>0\)
\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+1>0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2+1\ge1>0\) ( luôn đúng )
Vậy ...
Chúc bạn học tốt ~
\(-2+2x-x^2=-\left(x^2-2x+1\right)-1\)
\(=-\left(x-1\right)^2-1\)
Do \(-\left(x-1\right)^2\le0\)
\(\Rightarrow-\left(x-1\right)^2-1\le0-1< 0\left(dpcm\right)\)
1 Chứng minh rằng
a.2x^28x+20>0 với mọi x
b.x^4-3x^2+5>0 với mọi x
c.-x^2+7x-17<0 với mọi x
d.-2x^2+6x^2-5<0 với mọi x
cho đơn thức A= 2/3 xy^2 (3/2x)
A) thu gọn đơn thức A
B) tìm bậc của đơn thúc thu gọn
C)tính giá trị của đơn thức tại x=-1 và y=2
D) chứng minh rằng A luôn nhận giá trị dương với mọi x ko = 0 và y ko = 0
mình đang cần gấp
\(A=\dfrac{2}{3}xy^2.\dfrac{3}{2}x\)
\(=x^2y^2\)
Bậc 4
Tại x=-1; y=2
\(\Rightarrow A=x^2y^2=\left(-1\right)^2.2^2=4\)
Ta có: x,y≠0
\(\Rightarrow\left\{{}\begin{matrix}x^2>0\forall x\ne0\\y^2>0\forall y\ne0\end{matrix}\right.\)
\(\Rightarrow x^2y^2>0\forall x,y\ne0\)
cho đơn thức A= 2/3 xy^2 (3/2x)
A) thu gọn đơn thức A
B) tìm bậc của đơn thúc thu gọn
C)tính giá trị của đơn thức tại x=-1 và y=2
D) chứng minh rằng A luôn nhận giá trị dương với mọi x ko = 0 và y ko = 0
mình đang cần gấp
a: A=2/3*3/2*xy^2*x=x^2y^2
b: Bậc là 4
c: Khi x=-1 và y=2 thì A=(-1)^2*2^2=4
d: A=(xy)^2>0 khi x<>0 và y<>0