Bài 2. Tìm giá trị nhỏ nhất của biểu thức:
D = 2x^2 + y^2 + z^2 − 2xy − 2xz − 2y + 2x + 4
Tìm giá trị nhỏ nhất của biểu thức ;
A = 2x2+2y2+z2+2xy-2xz-2yz-2x-4y
\(A=2x^2+2y^2+z^2+2xy-2xz-2yz-2x-4y\)
\(A=\left(x^2+y^2+z^2+2xy-2xz-2yz\right)+\left(x^2-2x+1\right)+\left(y^2-4y+4\right)-5\)
\(A=\left(z-y-x\right)^2+\left(x-1\right)^2+\left(y-2\right)^2-5\ge-5\)
\(\Rightarrow MINA=5\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
Giari giúp em bài này với ạ !
cho 3 số dương x,y,z thoả mãn 4x^2+4y^2+z^2=1/2(2x+2y+z)^2 .Tìm giá trị lớn nhất của biểu thức:
P= 8x^3+8y^3+z^3/(2x+2y+2z).(4xy+2yz+2xz)
Anh/ chị viết rõ đề bằng công thức toán được không ạ?
Vd : 1/2(2x+2y+z)^2 là \(\frac{1}{2\left(2x+2y+z\right)^2}\) hay sao?
\(P=8x^3+8y^3+\frac{z^3}{\left(2x+2y+2z\right)\left(4xy+2yz+2zx\right)}\) đúng ko ạ?
tìm giá trị nhỏ nhất của biểu thức
A= 2x^2 + 2xy +y^2 - 2x+ 2y +2
\(A=2x^2+2xy+y^2-2x+2y+2\)
\(=x^2-4x+4+x^2+y^2+1+2x+2y+2xy-3\)
\(=\left(x-2\right)^2+\left(x+y+1\right)^2-3\ge-3\)
Dấu \(=\)khi \(\hept{\begin{cases}x-2=0\\x+y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}\).
Tính giá trị nhỏ nhất của biểu thức
P=X^2 + Y^2 + XY + X + Y
Q=X^2 + XY + Y^2 - 3X - 3Y + 2017
F=X^2 + 2Y^2 + 3Z^2 - 2XY + 2XZ - 2X - 2Y - 8Z + 1998
M=(X+1)^2 + (X-3)^2 + (Y-2)^2 + 4
a) Tìm giác trị nhỏ nhất của biểu thức A=\(3x^2+y^2+4x-y\)
b) Cho các số thực x,y,z thỏa mãn 2x+2y+z=4 .Tìm giá trị lớn nhất của biểu thức B=2xy+yz+zx
mấy bạn chuyên toán giải giùm mk bài b) giùm ạ, mk đaq rất cần
Tìm giá trị nhỏ nhất của biểu thức:
\(M=5x^2+y^2-2x+2y+2xy+2004\)
\(M=5x^2+y^2-2x+2y+2xy+2004\)
\(=\left(x^2+2x+1\right)+2y\left(x+1\right)+y^2+4x^2-4x+1+2002\)
\(=\left(x+1\right)^2+2y\left(x+1\right)+y^2+\left(2x-1\right)^2+2002\)
\(=\left(x+1+y\right)^2+\left(2x-1\right)^2+2003\ge2002\) với mọi x,y
=> \(M_{min}=2002\Leftrightarrow\left\{{}\begin{matrix}x+y+1=0\\2x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(M_{min}=2002\)
Tìm giá trị nhỏ nhất của biểu thức:
\(A=2x^2+y^2+8x-2xy-2y+1988\)
\(A=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+x^2+6x+9+1978\)
\(=\left(x-y\right)^2+2\left(x-y\right)+1+\left(x+3\right)^2+1978\)
\(=\left(x-y+1\right)^2+\left(x+3\right)^2+1978\ge1978\)
\(A_{min}=1978\) khi \(\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)
Tìm giá trị nhỏ nhất của :
a, A = x^2+2y^2 +2xy-6y-2x+2021
b, B = 2x^2+4y^2 +z^2-2x+4y+2xz+2016
Help meee.... Gấp quá.... Help
câu a hình như sai, đúng ra phải là 2x^2 chứ nhỉ, theo đề tính ra thì thừa 2x
câu b nhỏ nhất = 2014, cần cách làm ko z
Nếu được bạn cho mình cách giải đi ạ!
a, 2x2 + 2y2 + 2xy - 6y - 2x + 2021
= x2 + 2xy + y2 + y2 - 2 * 3y + 9 + x2 - 2x + 1 + 2011
= (x + y)2 + (y + 3)2 + (x - 1)2 + 2011
=> GTNN = 2011
Cho x , y nguyên . Tìm giá trị nhỏ nhất của biểu thức : S = \(x^2+2y^2+2x-2y+2xy+2026\)
\(S=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(y^2-4y+4\right)+2021\)
\(S=\left(x+y+1\right)^2+\left(y-2\right)^2+2021\ge2021\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(-3;2\right)\)