\(S=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(y^2-4y+4\right)+2021\)
\(S=\left(x+y+1\right)^2+\left(y-2\right)^2+2021\ge2021\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(-3;2\right)\)
\(S=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(y^2-4y+4\right)+2021\)
\(S=\left(x+y+1\right)^2+\left(y-2\right)^2+2021\ge2021\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(-3;2\right)\)
Tìm giá trị nhỏ nhất của biểu thức:
\(M=5x^2+y^2-2x+2y+2xy+2004\)
Cho x,y dương thỏa mãn : \(xy+1\le y\).Tìm giá trị nhỏ nhất của biểu thức :
\(Q=\dfrac{x^2-2xy+2y^2}{xy+y^2}\)
Cho các số thực dương x,y thỏa mãn x + \(\dfrac{1}{y}\) ≤ 1 .Tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{x^2-2xy+2y^2}{xy+y^2}\)
Cho x , y là các số thực tùy ý. Tìm giá trị nhỏ nhất của biểu thức:
A = x\(^2\) + 2y\(^2\) + 2xy - 2\(\sqrt{2}\)x - 2(\(\sqrt{2}\) + 1)y +2022
Cho x,y là các số thực. Tìm giá trị nhỏ nhất của biểu thức P = \(\left(x+2y+1\right)^2+\left(x+2y+5\right)^2\)
Cho các số dương x,y,z thỏa mãn điều kiện x+y+z = 2020
Tìm giá trị nhỏ nhất của biều thức \(T=\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+xz+2x^2}\)
Cho x, y, z là ba số thực dương. Tìm giá trị nhỏ nhất của biểu thức:
S = \(\dfrac{\sqrt{x^2-xy+y^2}}{x+y+2z}+\dfrac{\sqrt{y^2-yz+z^2}}{2x+y+z}+\dfrac{\sqrt{z^2-zx+x^2}}{x+2y+z}\)
Cho \(x,y,z\) là các thực thỏa \(x+y+z=1\).Tìm giá trị nhỏ nhất:
\(P=x^2y^2+y^2z^2+z^2x^2+6xyz\)
cho x,y là hai số thực dương thỏa mãn x+y≤xy.Tìm giá trị lớn nhất của biểu thức M=\(\dfrac{1}{2x^2+3y^2}+\dfrac{1}{3x^2+2y^2}\)