định m đẻ phương trình sau có 3 nhiệm phân biệt:
\(x^3-\left(4m-1\right)x^2-4\left(1-m\right)x+2=0\)
Tìm điều kiện của tham số m để phương trình bậc 2 ẩn x sau có 2 nghiệm phân biệt: \(\left(3-2m\right)x^2-\left(1-4m\right)x+1-2m=0\)
Ta có: \(\text{Δ}=\left(1-4m\right)^2-4\left(3-2m\right)\left(1-2m\right)\)
\(=16m^2-8m+4-4\left(2m-3\right)\left(2m-1\right)\)
\(=16m^2-8m+4-4\left(4m^2-2m-6m+3\right)\)
\(=16m^2-8m+4-4\left(4m^2-8m+3\right)\)
\(=16m^2-8m+4-16m^2+32m-12\)
\(=24m-8\)
Để phương trình có hai nghiệm phân biệt thì
\(\left\{{}\begin{matrix}3-2m\ne0\\24m-8>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m\ne3\\24m>8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{3}{2}\\m>\dfrac{1}{3}\end{matrix}\right.\)
Cho phương trình \(x^2-2\left(m-2\right)x+m-3=0\). Định m
a, Phương trình có 2 nghiệm phân biệt trên \(\left(1;+\infty\right)\)
b, có nghiệm trên \(\left(1;+\infty\right)\)
c, có đúng 1 nghiệm trên \(\left(1;+\infty\right)\)
. Dùng phương pháp bảng biến thiên .
Giúp với ạ, mình cảm ơn nhiều.
Tìm tham số m để phương trình sau có đúng 2 nghiệm phân biệt: \(x^3-\left(1+m\right)x^2+\left(m-1\right)x+2m-2=0\)
c1: Rút gọn biểu thức A=\(\left(\dfrac{1}{x-2\sqrt{x}}-\dfrac{2}{6-3\sqrt{x}}\right):\left(\dfrac{2}{3}+\dfrac{1}{\sqrt{x}}\right)\)
c2: Cho phương trình: \(x^2-2\left(2m-1\right)x+m^2-4m=0\left(1\right)\)
Tìm m để phương trình (1) có hai nghiệm phân biệt x1, x2 thoả mãn hệ thức \(x_1+x_2=\dfrac{-8}{x_1+x_2}\)
1:
\(=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{2}{3\sqrt{x}-6}\right):\dfrac{2\sqrt{x}+3}{3\sqrt{x}}\)
\(=\dfrac{3+2\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)
Tập hợp các giá trị tham số m để phương trình \(x^3+ \left(2m+5\right)x^2+2\left(m+3\right)x-4m-12=0\)
có ba nghiệm phân biệt lớn hơn -1 là (a;b)/ {c}. Tính T = 2a - 3b + 6c
Cho phương trình \(x^2+\left(1-4m\right)x+4m^2-2m=0\) với m là tham số. Tìm giá trị của m để phương trình đã cho có hai nghiệm phân biệt \(x_1,x_2\left(x_1< x_2\right)\) sao cho \(\left|x_1\right|-3\left|x_2\right|=0\)
cho phương trình \(\left(m+1\right)x^2-2\left(m+1\right)x+m-3=0\)
a, giải phương trình khi m = 3
b, tìm m để phương trình có 2 nghiệm phân biệt \(x_1;x_2\)thoả mãn \(\left(4x_1+1\right)\left(4x_2+1\right)=18\)
a, Thay m vào pt ta được :
(3+1).x2-2(3+1).x+3-3=0
\(\Leftrightarrow\)4x2-8x=0
\(\Leftrightarrow4x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy m=3 phương trình có 2 nghiệm là 0 và 2
b, Theo Vi et ta có :
\(\left\{{}\begin{matrix}x_1.x_2=\dfrac{m-3}{m+1}\\x_1+x_2=\dfrac{2\left(m+1\right)}{m+1}\end{matrix}\right.\left(vớim\ne-1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1.x_2=\dfrac{m-3}{m+1}\\x_1+x_2=2\end{matrix}\right.\) (1)
Ta có : (4x1+1)(4x2+1)=18
\(\Leftrightarrow16x_1.x_2+4x_1+4x_2+1=18\)
\(\Leftrightarrow16.x_1.x_2+4\left(x_1+x_2\right)=17\) (2)
Thay (1) vào (2) ta được :
16.\(\dfrac{m-3}{m+1}+4.2=17\)
\(\Leftrightarrow\dfrac{16m-48}{m+1}=9\)
\(\Leftrightarrow9\left(m+1\right)=16m-48\)
\(\Leftrightarrow9m+9=16m-48\)
\(\Leftrightarrow7m=57\)
\(\Leftrightarrow m=\dfrac{57}{7}\) (thỏa mãn m\(\ne-1\))
Vậy ..
Cho phương trình \(x^2-2\left(m-1\right)x+4m+4=0\) Tìm m để phương trình có hai nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(x_1+x_2^2=5\)
Với giá trị nào của m thì phương trình có hai nghiệm phân biệt :
a) \(x^2-2\left(m+3\right)x+m^2+3=0\)
b) \(\left(m+1\right)x^2+4mx+4m-1=0\)
a. x2 – 2(m+3)x + m2+3=0 (1)
Ta có: Δ' = [-(m+3)]2 -1.(m2 +3) = m2 + 6m + 9 – m2 - 3
= 6m +6
Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:
Δ' > 0 ⇔ 6m + 6 > 0 ⇔ 6m > -6 ⇔ m > -1
Vậy m > -1 thì phương trình đã cho có 2 nghiệm phân biệt
b. (m+1)x2+4mx+4m -1 =0 (2)
Ta có: Δ' = (2m)2 – (m +1)(4m -1) = 4m2 – 4m2 + m – 4m +1
= 1 – 3m
Phương trình (2) có 2 nghiệm phân biệt khi và chỉ khi:
*m +1 ≠ 0 ⇔ m ≠ -1
và *Δ' > 0 ⇔ 1 -3m > 0 ⇔ 3m < 1 ⇔ m < 1/3
Vậy m < 1/3 và m ≠ -1 thì phương trình đã cho có 2 nghiệm phân biệt