HELP ME:
Tìm n ϵ Z . Để n3 - n2 + 2n +7 chia hết cho n2 + 1Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)
\(\Leftrightarrow n^2+1\in\left\{1;65\right\}\)
hay \(n\in\left\{0;8;-8\right\}\)
Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+6 chia hết cho n^2+1
=>n+6 chia hết cho n^2+1
=>n^2-36 chia hết cho n^2+1
=>n^2+1-37 chia hết cho n^2+1
=>n^2+1 thuộc {1;37}
=>\(n^2\in\left\{0;36\right\}\)
=>n thuộc {0;6;-6}
Ta thử lại, ta thấy n=-6 và n=6 không thỏa mãn
=>n=0
1.Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
2.Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Pls!
Bài 2:
\(n^3-n^2+2n+7⋮n^2+1\)
\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)
\(\Leftrightarrow n^2-64⋮n^2+1\)
\(\Leftrightarrow n^2+1\in\left\{1;65\right\}\)
\(\Leftrightarrow n\in\left\{0;8;-8\right\}\)
1. Tìm n ϵ Z, biết :
a, n2 - 2n + 3 ⋮ n + 4
b, 3n2 + n + 16 ⋮ n + 5n
c, n3 + n - 5n - 2 ⋮ n + 3
d, n + 4 ⋮ 3 - n
e, 2n + 1 ⋮ 5 - n
Giúp mình với thứ 7 mình phải nộp rồi ạ !
Viết lời giải ra giúp mình nhé !
Tìm số nguyên n để:
a) n3 – 2 chia hết cho n – 2
b) n3 – 3n2 – 3n – 1 chia hết cho n2 + n + 1
c) 5n – 2n chia hết cho 63
giúp vs ạ...
a: \(n^3-2⋮n-2\)
=>\(n^3-8+6⋮n-2\)
=>\(6⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(n^3-3n^2-3n-1⋮n^2+n+1\)
=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
=>\(3⋮n^2+n+1\)
=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)
mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)
nên \(n^2+n+1\in\left\{1;3\right\}\)
=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
I.CHỨNG MINH :
1) n.(2n+7).(7n+7) chia hết cho 6 (n thuộc N)
2) n3-13n chia hết cho 6 (n thuộc Z)
3) m.n.(m2-n2) chia hết cho 3 (m,n thuộc Z)
LÀM NHANH GIÚP tớ nhá ^_^ Tớ tick
n2 + 2n + 7 chia hết cho n + 1
Help me pls!!!!!!
** Bổ sung điều kiện $n$ là số nguyên.
Lời giải:
$n^2+2n+7\vdots n+1$
$\Rightarrow n(n+1)+(n+1)+6\vdots n+1$
$\Rightarrow 6\vdots n+1$
$\Rightarrow n+1\in\left\{\pm 1; \pm 2; \pm 3; \pm 6\right\}$
$\Rightarrow n\in\left\{0; -2; -3; 1; -4; 2; -7; 5\right\}$
Chứng minh rằng n3+3n2+ 2n chia hết cho 6 với mọi n ϵ Z
\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)
\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)
\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)
Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)
\(n^3+3n^2+2n\)
\(=n\left(n^2+3n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)
Chứng minh rằng
a) A = n(3n-1) - 3n(n-2) ⋮ 5 (∀n ϵ R)
b) B = n(n+5) - (n-3)(n+2) ⋮ 6 (∀n ∈ Z)
c) C= (n2 + 3n - 1)(n+2) - n3+2 ⋮ 5 (∀n ϵ Z)
a: A=3n^2-n-3n^2+6n=5n chia hết cho 5
b: B=n^2+5n-n^2+n+6=6n+6=6(n+1) chia hết cho 6
c: =n^3+2n^2+3n^2+6n-n-2-n^3+2
=5n^2+5n
=5(n^2+n) chia hết cho 5