Cho B= 24.(52 + 1) (54 + 1)......(532 + 1) - 564
C = 48.(52 + 1) (54 + 1) (58 + 1)(516 + 1)(532 + 1)(564 + 1)
E= (x - 2)3- (x + 1).(x2 - x + 1)+6.(x - 1)2
\(C=48\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)=2\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)=2\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\left(5^{128}-1\right)=2.5^{128}-2\)
c: Ta có: \(C=48\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\cdot\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^2-1\right)\left(5^2+1\right)\cdot\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^{16}-1\right)\cdot\left(5^{16}+1\right)\cdot\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^{32}-1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^{64}-1\right)\left(5^{64}+1\right)\)
\(=2\cdot\left(5^{128}-1\right)\)
\(=2\cdot5^{128}-2\)
d: Ta có: \(E=\left(x-2\right)^3-\left(x+1\right)\left(x^2-x+1\right)+6\left(x-1\right)^2\)
\(=x^3-6x^2+12x-8-x^3-1+6x^2-12x+6\)
\(=-3\)
1+52+54+...+540chia hết cho 26
1+22+24+....+2100 chia hết cho 21
1+32+34+...+3100chia hết cho 82
`#3107.101107`
Gọi biểu thức trên là A
Ta có:
\(A=1+5^2+5^4+...+5^{40}\\ =1\cdot\left(1+5^2\right)+5^4\cdot\left(1+5^2\right)+...+5^{38}\cdot\left(1+5^2\right)\\ =\left(1+5^2\right)\cdot\left(1+5^4+...+5^{38}\right)\\ =26\cdot\left(1+5^4+...+5^{38}\right)\)
Vì \(26\cdot\left(1+5^4+...+5^{38}\right)\text{ }⋮\text{ }26\)
\(\Rightarrow A\text{ }⋮\text{ }26\)
_______
Gọi biểu thức trên là B
Ta có:
\(B=1+2^2+2^4+...+2^{100}\\ =1\cdot\left(1+2^2+2^4\right)+2^6\cdot\left(1+2^2+2^4\right)+...+2^{96}\cdot\left(1+2^2+2^4\right)\\ =\left(1+2^2+2^4\right)\cdot\left(1+2^6+...+2^{96}\right)\\ =21\cdot\left(1+2^6+...+2^{96}\right)\)
Vì \(21\cdot\left(1+2^6+...+2^{96}\right)\text{ }⋮\text{ }21\)
\(\Rightarrow B\text{ }⋮\text{ }21\)
_______
Gọi biểu thức trên là C
Ta có:
\(C=1+3^2+3^4+...+3^{100}\\ =1\cdot\left(1+3^2+3^4+3^6\right)+3^6\cdot\left(1+3^2+3^4+3^6\right)+...+3^{94}\cdot\left(1+3^2+3^4+3^6\right)\\ =\left(1+3^2+3^4+3^6\right)\cdot\left(1+3^6+...+3^{94}\right)\\ =820\cdot\left(1+3^6+...+3^{94}\right)\)
Vì \(820\cdot\left(1+3^6+...+3^{94}\right)\text{ }⋮\text{ }82\)
\(\Rightarrow C\text{ }⋮\text{ }82.\)
a) \(A=1+5^2+5^4+5^6...+5^{40}\)
\(\Rightarrow A=\left(1+5^2\right)+5^4\left(1+5^2\right)+...+5^{38}\left(1+5^2\right)\)
\(\Rightarrow A=26+5^4.26+...+5^{38}.26\)
\(\Rightarrow A=26\left(1+5^4+...+5^{38}\right)⋮26\)
\(\Rightarrow1+5^2+5^4+5^6...+5^{40}⋮6\left(dpcm\right)\)
b) \(B=1+2^2+2^4+2^6+...+2^{100}\)
\(\Rightarrow B=\left(1+2^2+2^4\right)+2^6\left(1+2^2+2^4\right)+...+2^{96}\left(1+2^2+2^4\right)\)
\(\Rightarrow B=21+2^6.21+...+2^{96}.21\)
\(\Rightarrow B=21\left(1+2^6+...+2^{96}\right)⋮21\)
\(\Rightarrow1+2^2+2^4+2^6+...+2^{100}⋮21\left(dpcm\right)\)
Bài C tương tự bạn tự làm nhé!
Tìm x biết :
1+52+54+...+52x = \(\dfrac{25^6-1}{24}\)
Mình cần trước 6:30 hôm nay, mọi người giúp mình với :<
\(1+5^2+5^4+...+5^{2x}\left(1\right)=\dfrac{25^6-1}{24}\)
Đặt \(\left(1\right)=A\)
\(\Rightarrow A=1+5^2+...+5^{2x}\)
\(\Rightarrow5^2A=5^2+5^4+...+5^{2x+2}\)
\(\Rightarrow25A=5^2+5^4+...+5^{2x+2}\)
\(\Rightarrow25A-A=5^2+5^4+...+5^{2x+2}-1-5^2-...-5^{2x}\)
\(\Rightarrow24A=5^{2x+2}-1\)
\(\Rightarrow A=\dfrac{5^{2x+2}-1}{24}\)
Mà: \(A=\dfrac{25^6-1}{24}\)
\(\Rightarrow\dfrac{5^{2x+2}-1}{24}=\dfrac{\left(5^2\right)^6-1}{24}\)
\(\Rightarrow5^{2x+2}-1=5^{12}-1\)
\(\Rightarrow5^{2x+2}=5^{12}\)
\(\Rightarrow2x+2=12\)
\(\Rightarrow2x=10\)
\(\Rightarrow x=\dfrac{10}{2}\)
\(\Rightarrow x=5\)
Bài toán 1: Tính giá trị các lũy thừa sau :
a) 22, 23, 24 , 25 , 26 , 27 , 28 , 29 , 210.
b) 32, 33, 34 , 35.
c) 42, 43, 44.
d) 52, 53, 54.
trên đầu bài là giấu phẩy hay giấu nhân thế
\(a,2^2=4,2^3=8,2^4=16,2^5=32,2^6=64,2^7=128,2^8=256,2^9=512,2^{10}=1024\)
\(b,3^2=9,3^3=27,3^4=81,3^5=243\)
\(c,4^2=16,4^3=64,4^4=256\)
\(d,5^2=25,5^3=125,5^4=625\)
a: \(2^2=4\)
\(2^3=8\)
\(2^4=16\)
\(2^5=32\)
\(2^6=64\)
\(2^7=128\)
\(2^8=256\)
\(2^9=512\)
\(2^{10}=1024\)
b: \(3^2=9\)
\(3^3=27\)
\(3^4=81\)
\(3^5=243\)
c: \(4^2=64\)
\(4^3=256\)
\(4^4=1024\)
d: \(5^2=25\)
\(5^3=125\)
\(5^4=625\)
Tìm ƯC thông qua tìm ƯCLN
a) 40 và 24
b) 12 và 52
c) 36 và 990
d) 54 và 36
Ai Tính Nhanh Nhất Mình Cho 1 Tick Nhé
Bài 1: a, Chứng minh: A=21+22+23+24+...+22010 chia hết cho 3 và 7
b, Chứng minh: B=31+32+33+34+...+22010 chia hết cho 4 và 13
c, Chứng minh: C=51+52+53+54+...+52010 chia hết cho 6 và 31
d, Chứng minh: C=71+72+73+74+...+72010 chia hết cho 8 và 57
Bài 2: So sánh
a, A=20+21+22+23+...+22011 và B=22011-1
b, A=2019.2021 và B=20202
Bài 1:
\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)
\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)
Bài 2:
\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)
1)Tìm số dư của phép chia B cho 4
B=1+3+32+33+...+3100
2)Thu gọn C=5-52+53-54+...+52023-52024
Bài 1:
$B=1+3+3^2+3^3+...+3^{100}$
$=1+(3+3^2)+(3^3+3^4)+...+(3^{99}+3^{100})$
$=1+3(1+3)+3^3(1+3)+...+3^{99}(1+3)$
$=1+(1+3)(3+3^3+...+3^{99})=1+4(3+3^3+....+3^{99})$
$\Rightarrow B$ chia 4 dư 1.
Bài 2:
$C=5-5^2+5^3-5^4+...+5^{2023}-5^{2024}$
$5C=5^2-5^3+5^4-5^5+...+5^{2024}-5^{2025}$
$\Rightarrow C+5C=5-5^{2025}$
$6C=5-5^{2025}$
$C=\frac{5-5^{2025}}{6}$
bài 1 ; Tính giá trị của biểu thức sau bằng cách hợp lý
a) 54 x 113 + 54 x 113 +113
b) ( 532 x 7 - 266 x14 ) x ( 532 x7 + 266)
c) 117 x ( 36 + 62 ) - 17 x ( 62 + 36 )
d) ( 145 x 99 + 145 ) - ( 143 x 101 - 143 )
45 x 16 - 17
e, ______________
45 x 15 + 28
a, 54 x 113 + 54 x 113 + 113
= 113 x ( 54 + 54 + 1 )
= 113 x 109
= 12 317
b, ( 532 x 7 - 266 x 14 ) x ( 532 x 7 + 266 )
= ( 266 x 2 x 7 - 266 x 14 ) - ( 532 x 7 + 266 )
= 266 x ( 2 x 7 - 14 )
= 266 x ( 14 - 14 )
= 266 x 0
= 0
c, 117 x ( 36 + 62 ) - 17 x ( 62 + 36 )
= 117 x 98 - 17 x 98
= 98 x ( 117 - 17 )
= 98 x 100
= 9800
d, ( 145 x 99 + 145 ) - ( 143 x 101 - 143 )
= 145 x ( 99 + 1 ) - 143 x ( 101 - 1 )
= 145 x 100 - 143 x 100
= 14500 - 14300
= 200
e, 45 x 16 - 17
______________
45 x 15 + 28
Ta có : 45 x 16 - 17
= 720 - 17
= 703
Ta có : 45 x 15 + 28
= 675 + 28
= 703
Vậy 45 x 16 - 17 703
______________ = _____________ = 1
45 x 15 + 28 703
( * giải thích thêm : __________ chính là dấu chia đó )
Ta có: A = 5 + 52 + 53 +....+ 5100
chia hết
Ta có: A = 5 + 52 + 53 +....+ 5100
chia hết
Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip
Điền dấu >; <, = vào chỗ chấm:
45 + 3 … 50 | 54 – 2 … 54 + 2 |
45 + 30 … 35 + 40 | 54 – 20 … 52 – 40 |
45 + 34 … 34 + 45 | 54 – 24 … 45 – 24 |
Lời giải chi tiết:
45 + 3 < 50 | 54 – 2 < 54 + 2 |
45 + 30 = 35 + 40 | 54 – 20 > 52 – 40 |
45 + 34 = 34 + 45 | 54 – 24 > 45 – 24 |
+AHƯUẺ6T89U0I-O=ỠNTFIGO8;.,DLDYHỤ890L,SLRT7DFGUYI0-L, G.UIO.;UI...............................................................................................................................................................chó