Tính
\(ab^2\sqrt{\frac{3}{a^2b^4}}\)
\(b^5\sqrt{\frac{a^2+6a+9}{b^8}}\)
\(A=\frac{1}{ab}\cdot\frac{\sqrt{a^2b^4}}{4}\)(a<0;b khác 0)
\(B=\frac{\left(a-3\right)^2}{2}\cdot\sqrt{\frac{25}{a^2-6a+9}}\)(a<3)
A= \(\frac{1}{ab}\). \(\frac{|ab^2|}{4}\)
Vì a<0 nên \(\left|ab^2\right|\)= -a\(b^2\) => A= -b/4
\(A=\frac{1}{ab}.\frac{\left|a\right|b^2}{4}=\frac{1}{a}.\frac{-ab}{4}=\frac{-b}{4}\)
\(B=\frac{\left(a-3\right)^2}{2}.\frac{5}{\left|3-a\right|}=\frac{\left(a-3\right)^2}{2}.\frac{-5}{a-3}=\frac{-5\left(a-3\right)}{2}\)
1 Tìm các số nguyen a,b tm \(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
2CM \(\frac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)
\(\frac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)
\(\Leftrightarrow a^4+b^4-2ab^3-2a^3b+2a^2b^2\ge0\)
\(\Leftrightarrow a^3\left(a-2b\right)-b^3\left(a-2b\right)+2a^2b^2\ge0\)
\(\Leftrightarrow\left(a-2b\right)\left(a-b\right)\left(a^2+ab+b^2\right)+2a^2b^2\ge0\left(1\right)\)
Do BĐT trên đối xứng,ko mất tính tổng quát giả sử \(a\le b\)
Khi đó \(\left(a-2b\right)\left(a-b\right)\left(a^2+2ab+b^2\right)\ge0\)
\(\Rightarrow\left(1\right)\ge0\left(true\right)\)
P/S:E ko bt chỗ giả sử có đúng ko nx:(((
\(\left(a-b\right)\left(a-2b\right)\left(a^2+ab+b^2\right)\ge0\) ạ.em viết nhầm:(((
Cool Kid phân tích sai dòng 3 rồi kìa, xem kỹ lại ik.
2/ \(BĐT\Leftrightarrow a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)
\(\Leftrightarrow\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(a-b\right)^2\ge0\)(đúng)
Đẳng thức xảy ra khi a = b
Vậy....
Chắc đúng rồi nhỉ:)
Ôn tập Bất đẳng thức
1 , Cho a,b,c<3 thỏa mãn abc(a+b+c)=3 . Tìm GTNN của C= \(\frac{a}{\sqrt{9-b^2}}+\frac{b}{\sqrt{9-c^2}}+\frac{c}{\sqrt{9-a^2}}\)
2, Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Chứng minh a, \(\frac{1}{4-\sqrt{ab}}+\frac{1}{4-\sqrt{bc}}+\frac{1}{4-\sqrt{ca}}\le1\)
b, \(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}\ge a+b+c\)
3, Cho a,b,c >0 và \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\)
Tính GTLN của P= \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ca+2a^2}}\)
4 , Cho a,b,c>0 và \(ab+bc+ca\ge a+b+c\)
Chứng minh \(\frac{a^2}{\sqrt{a^3+8}}+\frac{b^2}{\sqrt{b^3+8}}+\frac{c^2}{\sqrt{c^3+8}}\ge1\)
3.
\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)
\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)
Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)
\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)
\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)
Rút Gọn
a)\(S=\sqrt{\frac{36a^2b^6c^8}{4}}\) với a < 0; b < 0
b)\(S=\sqrt{\frac{1}{abc}\left(\sqrt{\frac{abc^2}{4}+\sqrt{\frac{ab^5c^3}{9}}}\right)}\) với a > 0 ; b > 0 ; c > 0
Rút gọn
a) \(\sqrt{\frac{9-4\sqrt{5}}{2-\sqrt{5}}}\)
b) \(\sqrt{\frac{7-4\sqrt{3}}{\sqrt{3}-2}}\)
c) \(ab^2.\sqrt{\frac{3}{a^2b^4}}\)
d)\(\frac{1}{a-b}.\sqrt{a^6.\left(a-b\right)^2}\left(a< b< 0\right)\)
e) \(\frac{x+y+2\sqrt{xy}}{x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}}\)
\(\frac{a^3-a--2b-\frac{b^2}{a}}{\left(\frac{1}{\sqrt{a}}-\sqrt{\frac{1}{a}+\frac{b}{a^2}}\right)\left(\sqrt{a}+\sqrt{a+b}\right)}:\left(\frac{a^3+a^2+ab+a^2b}{a^2-b^2}+\frac{b}{a-b}\right)\)
Chứng minh đẳng thức với \(ab\ne0\)và \(a\ne b^3\)
\(\left(\sqrt[3]{a^4}+b^2\sqrt[3]{a^2}+b^4\right).\frac{\sqrt[3]{a^8}-b^6+b^4\sqrt[3]{a^2}-a^2b^2}{a^2b^2+b^2-b^8a^2-b^4}=a^2b^2\)
Rút gọn biểu thức chứa chữ
a) \(2\sqrt{3a}-\sqrt{12a^3}-5\sqrt{\frac{a}{3}}-\frac{1}{4}\sqrt{27a}\)
b) \(2a\sqrt{b+a}+\left(a+b\right)\sqrt{\frac{1}{a+b}}-\sqrt{a^3+a^2b}\)
c) \(2\sqrt{a}+5\sqrt{\frac{a}{9}}-a\sqrt{\frac{16}{a}}\sqrt{a^3}\)
a) Ta có: \(2\sqrt{3a}-\sqrt{12a^3}-5\cdot\sqrt{\frac{a}{3}}-\frac{1}{4}\cdot\sqrt{27a}\)
\(=2\sqrt{3a}-2a\sqrt{3a}-\frac{5\sqrt{a}}{\sqrt{3}}-\frac{1}{4}\cdot3\sqrt{3a}\)
\(=2\sqrt{3a}-\frac{3}{4}\sqrt{3a}-2a\sqrt{3a}-\frac{5\sqrt{a}}{\sqrt{3}}\)
\(=\frac{5}{4}\sqrt{3a}-2a\sqrt{3a}-5\sqrt{3a}\cdot\frac{1}{3}\)
\(=\frac{5}{4}\sqrt{3a}-\frac{5}{3}\sqrt{3a}-2a\sqrt{3a}\)
\(=\frac{-5}{12}\sqrt{3a}-2a\sqrt{3a}\)
b) Ta có: \(2a\sqrt{b+a}+\left(a+b\right)\cdot\sqrt{\frac{1}{a+b}}-\sqrt{a^3+a^2b}\)
\(=2a\sqrt{a+b}+\sqrt{\left(a+b\right)^2\cdot\frac{1}{a+b}}-a\sqrt{a+b}\)
\(=a\sqrt{a+b}+\sqrt{a+b}\)
\(=\left(a+1\right)\cdot\sqrt{a+b}\)
c) Ta có: \(2\sqrt{a}+5\sqrt{\frac{a}{9}}-a\sqrt{\frac{16}{a}}\cdot\sqrt{a^3}\)
\(=2\sqrt{a}+5\cdot\frac{\sqrt{a}}{3}-4a^2\)
\(=\frac{11}{3}\sqrt{a}-4a^2\)
Chứng minh rằng, nếu \(ab\ne0\)và \(a\ne b^3\)thì ta luôn có:
\(\left(\sqrt[3]{a^4}+b^2\sqrt[3]{a^2}+b^4\right).\frac{\left(\sqrt[3]{a^8}-b^6+b^4\sqrt[3]{a^2}-a^2b^2\right)}{a^2b^2+b^2-b^8a^2-b^4}=a^2b^2\)
Cố gắng hơn nữa ah. Thế vô là thấy nó sai liền nên m không giải nữa.
Thay \(\hept{\begin{cases}a=2\\b=2\end{cases}}\) thì ta có:
\(\left(\sqrt[3]{2^4}+2^2.\sqrt[3]{2^2}+2^4\right).\frac{\left(\sqrt[3]{2^8}-2^6+2^4.\sqrt[3]{2^2}-2^2.2^2\right)}{2^2.2^2+2^2-2^8.2^2-2^4}=2^2.2^2\)
\(\Leftrightarrow1,477=16\left(sai\right)\)
Vậy đề bài cho tào lao.
mình chép đúng đề mà chắc là đề sai thật mình làm mãi cx không ra như thế nên mới hỏi