Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thành Nam
Xem chi tiết
Vu Ngoc Chau
11 tháng 6 2019 lúc 21:19

A= \(\frac{1}{ab}\). \(\frac{|ab^2|}{4}\)

Vì a<0 nên \(\left|ab^2\right|\)= -a\(b^2\) => A= -b/4

Hoàng Tử Hà
11 tháng 6 2019 lúc 21:22

\(A=\frac{1}{ab}.\frac{\left|a\right|b^2}{4}=\frac{1}{a}.\frac{-ab}{4}=\frac{-b}{4}\)

\(B=\frac{\left(a-3\right)^2}{2}.\frac{5}{\left|3-a\right|}=\frac{\left(a-3\right)^2}{2}.\frac{-5}{a-3}=\frac{-5\left(a-3\right)}{2}\)

Nguyệt Hà
Xem chi tiết
zZz Cool Kid_new zZz
8 tháng 10 2019 lúc 20:01

\(\frac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)

\(\Leftrightarrow a^4+b^4-2ab^3-2a^3b+2a^2b^2\ge0\)

\(\Leftrightarrow a^3\left(a-2b\right)-b^3\left(a-2b\right)+2a^2b^2\ge0\)

\(\Leftrightarrow\left(a-2b\right)\left(a-b\right)\left(a^2+ab+b^2\right)+2a^2b^2\ge0\left(1\right)\)

Do BĐT trên đối xứng,ko mất tính tổng quát giả sử \(a\le b\)

Khi đó \(\left(a-2b\right)\left(a-b\right)\left(a^2+2ab+b^2\right)\ge0\)

\(\Rightarrow\left(1\right)\ge0\left(true\right)\)

P/S:E ko bt chỗ giả sử có đúng ko nx:(((

zZz Cool Kid_new zZz
8 tháng 10 2019 lúc 20:03

\(\left(a-b\right)\left(a-2b\right)\left(a^2+ab+b^2\right)\ge0\) ạ.em viết nhầm:(((

tth_new
8 tháng 10 2019 lúc 20:31

Cool Kid  phân tích sai dòng 3 rồi kìa,  xem kỹ lại ik.

2/ \(BĐT\Leftrightarrow a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)

\(\Leftrightarrow\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2+b^2\right)\left(a-b\right)^2\ge0\)(đúng)

Đẳng thức xảy ra khi a = b

Vậy....

Chắc đúng rồi nhỉ:)

Văn Thắng Hồ
Xem chi tiết
Hồng Phúc
15 tháng 10 2020 lúc 22:48

3.

\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)

\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)

Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)

\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)

\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)

Khách vãng lai đã xóa
Quả Tạ Vàng
Xem chi tiết
阮芳草
Xem chi tiết
Phạm Hồng Huện
Xem chi tiết
Kudo
Xem chi tiết
Kudo
19 tháng 8 2018 lúc 20:46

mn giúp mk với

Không Tên
19 tháng 8 2018 lúc 23:46

hình như đề sai

bạn vào câu hỏi tương tự nhé

học tốt

ChloeVera
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2020 lúc 23:43

a) Ta có: \(2\sqrt{3a}-\sqrt{12a^3}-5\cdot\sqrt{\frac{a}{3}}-\frac{1}{4}\cdot\sqrt{27a}\)

\(=2\sqrt{3a}-2a\sqrt{3a}-\frac{5\sqrt{a}}{\sqrt{3}}-\frac{1}{4}\cdot3\sqrt{3a}\)

\(=2\sqrt{3a}-\frac{3}{4}\sqrt{3a}-2a\sqrt{3a}-\frac{5\sqrt{a}}{\sqrt{3}}\)

\(=\frac{5}{4}\sqrt{3a}-2a\sqrt{3a}-5\sqrt{3a}\cdot\frac{1}{3}\)

\(=\frac{5}{4}\sqrt{3a}-\frac{5}{3}\sqrt{3a}-2a\sqrt{3a}\)

\(=\frac{-5}{12}\sqrt{3a}-2a\sqrt{3a}\)

b) Ta có: \(2a\sqrt{b+a}+\left(a+b\right)\cdot\sqrt{\frac{1}{a+b}}-\sqrt{a^3+a^2b}\)

\(=2a\sqrt{a+b}+\sqrt{\left(a+b\right)^2\cdot\frac{1}{a+b}}-a\sqrt{a+b}\)

\(=a\sqrt{a+b}+\sqrt{a+b}\)

\(=\left(a+1\right)\cdot\sqrt{a+b}\)

c) Ta có: \(2\sqrt{a}+5\sqrt{\frac{a}{9}}-a\sqrt{\frac{16}{a}}\cdot\sqrt{a^3}\)

\(=2\sqrt{a}+5\cdot\frac{\sqrt{a}}{3}-4a^2\)

\(=\frac{11}{3}\sqrt{a}-4a^2\)

Cố gắng hơn nữa
Xem chi tiết
alibaba nguyễn
12 tháng 6 2017 lúc 14:41

Cố gắng hơn nữa ah. Thế vô là thấy nó sai liền nên m không giải nữa.

alibaba nguyễn
12 tháng 6 2017 lúc 9:23

Thay \(\hept{\begin{cases}a=2\\b=2\end{cases}}\) thì ta có:

\(\left(\sqrt[3]{2^4}+2^2.\sqrt[3]{2^2}+2^4\right).\frac{\left(\sqrt[3]{2^8}-2^6+2^4.\sqrt[3]{2^2}-2^2.2^2\right)}{2^2.2^2+2^2-2^8.2^2-2^4}=2^2.2^2\)

\(\Leftrightarrow1,477=16\left(sai\right)\)

Vậy đề bài cho tào lao.

Cố gắng hơn nữa
12 tháng 6 2017 lúc 14:30

mình chép đúng đề mà chắc là đề sai thật mình làm mãi cx không ra như thế nên mới hỏi