Cho P= 51+52+53+..........+598+599+5100
a) CM: Pchia hết cho 30
Cho S = 1 - 5 + 52 - 53 +.... + 598 - 599
a)Tính S b)CMR: 5100 chia cho 6 dư 1
0\(a.S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ 5S=5-5^2+5^3-5^4+.....+5^{99}-5^{100}\\ 5S+S=\left(5-5^2+5^3-5^4+.....+5^{99}-5^{100}\right)+\left(1-5^{ }+5^2-5^3+.....+5^{98}-5^{99}\right)\\ 6S=1-5^{100}\\ S=\dfrac{1-5^{100}}{6}\\ \)
\(b,S6=1-5^{100}\\ 1-S6=5^{100}\)
=> 5100 chia 6 du 1
e đang cần gấp, có ai đến giúp e ko?
\(S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ a,S=5^0.\left(1-5\right)+5^2.\left(1-5\right)+...+5^{98}.\left(1-5\right)=-4.\left(5^0+5^2+5^4+...+5^{98}\right)\)
Cho P= 51+52+53+..........+598+599+5100
a) CM: Pchia hết cho 30
b) CM: Pchia hết cho 126
c) Tìm chữ số tận cùng của P
P= 51+52+53+..........+598+599+5100
P= (51+52)+(53+54)+..........+(599+5100)
P= (51+52)(1+52+..........+597+598+599)
P=30.(1+52+..........+597+598+599)chia hết cho 30
con chia het cho 126 ban lam tuong tu nhung (51+52) bang (51+52+53+54+55+56)roi lam tuong tu
a)\(P=5^1+5^2+5^3+...+5^{98}+5^{99}+5^{100}\)
=>\(P=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{97}+5^{98}\right)+\left(5^{99}+5^{100}\right)\)
=>\(P=30+5^2\left(5+5^2\right)+...+5^{96}\left(5+5^2\right)+5^{98}\left(5+5^2\right)\)
=>\(P=30+5^2.30+...+5^{96}.30+5^{98}.30\)
=>\(P=30\left(1+5^2+...+5^{96}+5^{98}\right)\)chia hết cho 30
Vậy P chia hết cho 30 (đpcm)
b) chứng minh tương tự câu a
c) P chia hết cho 30 => P có tận cùng là 0
Ta có: A = 5 + 52 + 53 +....+ 5100
chia hết
Ta có: A = 5 + 52 + 53 +....+ 5100
chia hết
Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip
1)Cho S = 1 - 5 + 52 - 53 + ... + 598 - 599
a) Tính S
b) CMR : 5100 chia cho 6 dư 1
Bài 1:
a: \(S=1-5+5^2-5^3+...+5^{98}-5^{99}\)
=>\(5S=5-5^2+5^3-5^4+...+5^{99}-5^{100}\)
=>\(6S=5-5^2+5^3-5^4+...+5^{99}-5^{100}+1-5+5^2-5^3+...+5^{98}-5^{99}\)
=>\(6S=-5^{100}+1\)
=>\(S=\dfrac{-5^{100}+1}{6}\)
b: S=1-5+52-53+...+598-599 là số nguyên
=>\(\dfrac{-5^{100}+1}{6}\in Z\)
=>\(-5^{100}+1⋮6\)
=>\(5^{100}-1⋮6\)
=>\(5^{100}\) chia 6 dư 1
a) Chứng minh: B = 31 + 32 + 33 + 34 + … + 32010 chia hết cho 4.
b) Chứng minh: C = 51 + 52 + 53 + 54 + … + 52010 chia hết cho 31.
c) Cho S=17+52+53+54+ ... +52010 . Tìm số dư khi chia S cho 31.
\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4.\left(3+3^3+...+3^{2009}\right)\)
⇒ \(B\) ⋮ 4
b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)
Cho A=1/51+1/52+1/53+...+1/100
Cho B=1/2+1/12+1/30+...+1/9900
Tính A-B
Bài 1: Tính: A=31+33+35+37+...+3111
B=32+34+36+...+3200
C=51+53+55+...+599
D= 52+54+56+...+5100
Bài 2: Chứng minh các phân số sau tối giản với n ϵ N
a) \(\dfrac{2n+1}{n+1}\) b)\(\dfrac{2n+3}{3n+4}\)
Bài 1:
1) \(9A=3^3+3^5+...+3^{113}\)
\(\Rightarrow8A=9A-A=3^3+3^5+...+3^{113}-3-3^3-...-3^{111}=3^{113}-3\)
\(\Rightarrow A=\dfrac{3^{113}-3}{8}\)
2) \(9B=3^4+3^6+...+3^{202}\)
\(\Rightarrow8B=9B-B=3^4+3^6+...+3^{202}-3^2-3^4-...-3^{200}=3^{202}-3^2=3^{202}-9\)
\(\Rightarrow B=\dfrac{3^{202}-9}{8}\)
3) \(25C=5^3+5^5+...+5^{101}\)
\(\Rightarrow24C=25C-C=5^3+5^5+...+5^{101}-5-5^3-...-5^{99}=5^{101}-5\)
\(\Rightarrow C=\dfrac{5^{101}-5}{24}\)
4) \(25D=5^4+5^6+...+5^{102}\)
\(\Rightarrow24D=25D-D=5^4+5^6+...+5^{102}-5^2-5^4-...-5^{100}=5^{102}-25\)
\(\Rightarrow D=\dfrac{5^{102}-25}{24}\)
Bài 2:
a) Gọi d là UCLN(2n+1,n+1)
\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\n+1⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n+2⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\Rightarrow1⋮d\)
Vậy 2n+1 và n+1 là 2 số nguyên tố cùng nhau
\(\Rightarrow\dfrac{2n+1}{n+1}\) là phân số tối giản
b) Gọi d là UCLN(2n+3,3n+4)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+4⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\Rightarrow1⋮d\)
\(\Rightarrow\dfrac{2n+3}{3n+4}\) là phân số tối giản
Cho A=1/51+1/52+1/53+...+1/100 và B=1/2+1/12+1/30+...+1/9900.
Tính A-B