1.Cmr:
\(P=9x^2y^2+y^2-6xy-2y+1\ge0\)
Cmr:\(A=9x^2y^2+y^2-6xy-2y+1\ge0,\forall x,y\in R\)
Chứng minh \(P\left(x,y\right)=9x^2y^2+y^2-6xy-2y+1\ge0\forall x,y\in R\)
Sửa đề
\(P=9x^2y^2+y^2-6xy-2y+2\)
\(=\left(9x^2y^2-6xy+1\right)+\left(y^2-2y+1\right)\)
\(=\left(3xy-1\right)^2+\left(y-1\right)^2\ge0\)
haizzz,em đã nghĩ sai đề từ khi mới làm ( hèn chi làm hoài ko ra )
chứng minh P(x,y)=9x^2y^2+y^2-6xy-2y+1>=0 . please help me the exercise!!!
Bạn xem lại đề bài:
Giải thích:
Nếu x = 1/3 và y = 1
Ta có:
P ( 1/3, 1 ) = (\(9.\left(\frac{1}{3}\right)^2.1^2+1^2-6.1.\frac{1}{3}-2+1=-1< 0\)
bạn giải thích cách làm của bạn giúp tớ được không ???
Nghĩa là đề của bạn bị sai.
Bởi vì nếu thay giá trị x = 1/3 và y = 1 vào sẽ không thỏa mãn.
Phân tích các đa thức sau thành nhân tử
a.1-2y+y^2
b.(x+1)^2 - 25
c.1-4x^2
d.8-27x^3
e.27+27x+9x^2+6xy
f.8x^3-12x^2y+6xy^2-y^3
g.x^3+8y^3
\(\left(x-1\right)^2-25\)
\(=x^2-2x+1-25\)
\(=x^2-2x-24\)
\(=x^2-6x+4x-24\)
\(=x.\left(x-6\right)+4.\left(x-6\right)\)
\(=\left(x+4\right).\left(x-6\right)\)
a, \(1-2y+y^2=\left(y+1\right)^2=\left(y+1\right)\left(y+1\right)\)
b, \(\left(x+1\right)^2-25=\left(x+1\right)^2-5^2=\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)
c, \(1-4x^2=1^2-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)
d, \(8-27x^3=2^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
a)=(1-y)2
b)=(x+1)2-52
=(x+1+5)(x+1-5)
=(x+6)(x-4)
c)=12-(2x)2
=(1+2x)(1-2x)
d)=23-(3x)3
=(2-3x)(4+6x+9x2)
e)=33+3.9.x+3.3.x2+x3
=(3+x)3
Tìm nghiệm nguyên:
1, 9x2+3y2+6xy-6x+2y-35=0
2, x2=y2(x+y4+2y2).
Tìm GTNN: A= 9x^2-6xy+2y^2+1
\(A=9x^2-6xy+2y^2+1\)
Đề thiếu gì ko vậy
\(A=9x^2-6xy+y^2+1\)
\(=\left(3x+y\right)^2+1\)
Với mọi x;y thì \((3x+y)^2>=0\)
Do đó \(\left(3x+y\right)^2+1>=1\)
Hay A>=1 với mọi x;y
Để A=1 thì \(\left(3x+y\right)^2=0\)
<=>\(3x+y=0\)
<=>3x=-y<=>x=\(-\dfrac{y}{3}\)
Vậy...
Bài 1:Tính:
a) (2x-y)+(2x-y)+(2x-y)+3y
b) (x+2y)+(x-2y)+(8x-3y)
c) (x+2y)-2(x-2y)-(2x-3y)
Bài 2: Cho 2 đa thức P= 9x²-6xy+3y² và Q= -3x²+7xy-2y²
Tìm đa thức M biết M+2(x²-4y²)+Q=6x²-4xy+5y²+P
Bài 1:
a) (2x - y) + (2x - y) + (2x - y) + 3y
= 3(2x - y) + 3y
= 3(2x - y + 3y)
= 3(2x + 2y)
= 3.2(x + y)
= 6(x + y)
b) (x + 2y) + (x - 2y) + (8x - 3y)
= x + 2y + x - 2y + 8x - 3y
= 9x - 3y
= 3(3x - y)
c) (x + 2y) - 2(x - 2y) - (2x - 3y)
= x + 2y - 2x + 4y - 2x + 3y
= 9y - 3x
= 3(3y - x)
Bài 2:
M + 2(x2 - 4y2) + Q = 6x2 - 4xy + 5y2 + P
M + 2x2 - 8y2 -3x2 + 7xy - 2y2 = 6x2 - 4xy + 5y2 + 9x2 - 6xy + 3y2
M + 2x2 - 3x2 - 6x2 - 9x2 - 8y2 - 2y2 - 5y2 - 3y2 + 7xy + 4xy + 6xy = 0
M - 16x2 - 18y2 + 17xy = 0
M = 16x2 + 18y2 - 17xy
1. Cho \(x,y,z\in\left(0,1\right)\) và \(xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)\). Cmr: \(x^2+y^2+z^2\ge\frac{3}{4}\)
2. \(\left\{{}\begin{matrix}x,y,z\ge0\\x^2+y^2+z^2+xyz=4\end{matrix}\right.\) Cmr: \(x+y+z\le3\)
3. \(x\ne-2y\). Min : \(P=\frac{\left(2x^2+13y^2-xy\right)^2-6xy+9}{\left(x+2y\right)^2}\)
Câu 1:
\(2xyz=1-\left(x+y+z\right)+xy+yz+zx\)
\(\Rightarrow xy+yz+zx=2xyz+\left(x+y+z\right)-1\)
\(VT=x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\)
\(=\left(x+y+z\right)^2-2\left(x+y+z\right)-4xyz+2\)
\(VT\ge\left(x+y+z\right)^2-2\left(x+y+z\right)-\frac{4}{27}\left(x+y+z\right)^3+2\)
\(VT\ge\frac{4}{27}\left[\frac{15}{4}-\left(x+y+z\right)\right]\left(x+y+z-\frac{3}{2}\right)^2+\frac{3}{2}\ge\frac{3}{2}\)
(Do \(0< x;y;z< 1\Rightarrow x+y+z< 3< \frac{15}{4}\))
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)
Câu 2:
Từ điều kiện bài này có thể đặt ẩn phụ và AM-GM ra luôn kết quả, nhưng hơi rắc rối khi người ta hỏi từ đâu mà có cách đặt ẩn phụ như vậy, do đó ta giải trâu :D
\(x^2+y^2+z^2+xyz=4\)
\(\Leftrightarrow\frac{x^2}{4}+\frac{y^2}{4}+\frac{z^2}{4}+2\left(\frac{x}{2}.\frac{y}{z}.\frac{z}{2}\right)=1\)
\(\Leftrightarrow\frac{xy}{2z}.\frac{xz}{2y}+\frac{xy}{2z}.\frac{yz}{2x}+\frac{yz}{2x}.\frac{xz}{2y}+2\left(\frac{xy}{2z}.\frac{yz}{2x}.\frac{xy}{2y}\right)=1\)
Đặt \(\left(\frac{xy}{2z};\frac{zx}{2y};\frac{yz}{2x}\right)=\left(m;n;p\right)\Rightarrow mn+np+pn+2mnp=1\)
\(\Leftrightarrow2\left(n+1\right)\left(m+1\right)\left(p+1\right)=\left(n+1\right)\left(m+1\right)+\left(n+1\right)\left(p+1\right)+\left(m+1\right)\left(p+1\right)\)
\(\Leftrightarrow\frac{1}{n+1}+\frac{1}{m+1}+\frac{1}{p+1}=2\)
\(\Leftrightarrow1=\frac{n}{n+1}+\frac{m}{m+1}+\frac{p}{p+1}\ge\frac{\left(\sqrt{n}+\sqrt{m}+\sqrt{p}\right)^2}{m+n+p+3}\)
\(\Leftrightarrow m+m+p+2\left(\sqrt{mn}+\sqrt{np}+\sqrt{mp}\right)\le m+n+p+3\)
\(\Leftrightarrow\sqrt{mn}+\sqrt{np}+\sqrt{mp}\le\frac{3}{2}\)
\(\Leftrightarrow\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\le\frac{3}{2}\Leftrightarrow x+y+z\le3\)
Tính giá trị biểu thức:
A= (5x-2y).(2y+5x) tại x=-2 và y=-10
B= (2x-5).(4x2+10x+25) tại x=2
C= (3x+2y).(9x2-6xy+4y2) tai x=-1 va y=\(\dfrac{1}{2}\)
\(A=\left(5x-2y\right)\left(5x+2y\right)\)
\(A=\left(5x\right)^2-\left(2y\right)^2\)
\(A=25x^2-4y^2\)
\(A=25.\left(-2\right)^2-4\left(-10\right)^2\)
\(A=25.4-4.100\)
\(A=100-400\)
\(A=300\)
\(B=\left(2x-5\right)\left(4x^2+10x+25\right)\)
\(B=\left(2x\right)^3-5^3\)
\(B=8x^3-125\)
\(B=8.8-125\)
\(B=64-125\)
\(B=-61\)
\(C=\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)\)
\(C=\left(3x\right)^2+\left(2y\right)^2\)
\(C=9x^2+4y^2\)
\(C=9\left(-1\right)^2+4\left(\dfrac{1}{2}\right)^2\)
\(C=9+4.\dfrac{1}{4}\)
\(C=9+1\)
\(C=10\)