Giải phương trình :
\(f'\left(x\right)=0\) biết \(f\left(x\right)=e^{2x-1}+2e^{1-2x}+7x-5\)
cho hàm số \(f\left(x\right)=x^3-3x^2+2\)
a, giải bất phương trình \(f'\left(x\right)\le0\)
b, giải phương trình \(f'=\left(x^2-3x+2\right)=0\)
c, đặt \(g\left(x\right)=f\left(1-2x\right)+x^2-x+2022\) giải bất phương trình\(g'\left(x\right)\ge0\)
\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)
Lời giải:
a. $f'(x)\leq 0$
$\Leftrightarrow 3x^2-6x\leq 0$
$\Leftrightarrow x(x-2)\leq 0$
$\Leftrightarrow 0\leq x\leq 2$
b.
$f'(x)=x^2-3x+2=0$
$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$
$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$
$\Leftrightarrow x-2=0$
$\Leftrightarrow x=2$
c.
$g(x)=f(1-2x)+x^2-x+2022$
$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$
$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$
$g'(x)\geq 0$
$\Leftrightarrow -24x^2+2x+5\geq 0$
$\Leftrightarrow (5-12x)(2x-1)\geq 0$
$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$
Bài Tập: Giải phương trình :
a) (x + 5)(2x - 3) = 0
b) \(\left(x^2-9\right)\left(4-x\right)=0\)
c) \(\left(2x+3\right)\left(4-5x\right)=0\)
d) \(2\left(x+3\right)\left(x-4\right)=0\)
e) \(\left(x^2-9\right)\left(4-x\right)=0\)
f) \(\left(2x+3\right)\left(x^2-16\right)=0\)
a: \(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{3}{2}\end{matrix}\right.\)
b: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=4\end{matrix}\right.\)
c: \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\5x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{4}{5}\end{matrix}\right.\)
d: \(\Leftrightarrow\left(x+3\right)\left(x-4\right)=0\)
=>x+3=0 hoặc x-4=0
=>x=-3 hoặc x=4
e: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=4\end{matrix}\right.\)
f: \(\Leftrightarrow\left(2x+3\right)\left(x-4\right)\left(x+4\right)=0\)
hay \(x\in\left\{-\dfrac{3}{2};4;-4\right\}\)
a, \(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{3}{2}\end{matrix}\right.\)
b, \(\Leftrightarrow\left[{}\begin{matrix}x^2-9=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x=4\end{matrix}\right.\)
c, \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\4-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{4}{5}\end{matrix}\right.\)
d, \(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
e, tương tự d
f, \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\x^2-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\pm4\end{matrix}\right.\)
Câu 1: Cho \(\lim\limits_{x\rightarrow e}\frac{\log_2\left(\ln\left(x\right)\right)}{f\left(x\right)}=\frac{1}{\ln\left(2\right)e}\). Biết \(\ln\left(f\left(0\right)\right)=1\) và \(\int\limits^{5e}_{-e}f\left(2x\right)dx=18e^2\). Tính \(\frac{\ln\left(f\left(1+e\right)\right)}{f\left(1+e\right)^{10}}\) bằng:
a) 0
b) \(\frac{\ln\left(1+e\right)}{\left(1+e\right)^{10}}\)
c) \(1\)
d) \(\frac{\ln\left(1+2e\right)}{\left(1+2e\right)^{10}}\)
Giải các phương trình sau:
a) \(x^4-10x^2+9=0\)
b)\(4x^4+7x^2-2=0\)
c)\(\frac{1}{x}+\frac{1}{x+4}=\frac{2x+4}{x\left(x+4\right)}\)
d)\(\left(x-1\right)\left(x^2-4x+3\right)=0\)
e)\(\frac{2x-2}{x+2}=\frac{x+1}{x-1}\)
f)\(\left(1-3x\right)\left(2x+5\right)=0\)
a,x4-10x2+9=0
=>(x-1)(x3+x2-9x-9)=0
=> (x-1)(x+1)(x-3)(x+3)=0
=>\(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)hoặc\(\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\pm1\\x=\pm3\end{cases}}\)
Vậy tập nghiệm cuả pt là S={\(\pm1,\pm3\)}
trả lời
h bn tính theo đenta là ra thôi mà
hok tốt
1) giải phương trình:
a) \(\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x+5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
b) \(\frac{7x+10}{x+1}\left(x^2-x-2\right)-\frac{7x+10}{x+1}\left(2x^2-3x-5\right)=0\)
c) \(\frac{2x+5}{x+3}+1=\frac{4}{x^2+2x-3}-\frac{3x-1}{1-x}\)
d) \(\frac{13}{2x^2+x-21}+\frac{1}{2x+7}+\frac{6}{9-x^2}=0\)
e) \(\frac{x-49}{50}+\frac{x-50}{49}=\frac{49}{x-50}+\frac{50}{x-49}\)
f) \(\frac{1+\frac{x}{x+3}}{1-\frac{x}{x+3}}=3\)
Giải các bất phương trình sau
a/ (x+1).(x-1).(3x-6)>0
b/ \(\dfrac{x+3}{x-2}\le0\)
c/ \(\dfrac{\left(2x-5\right).\left(x+2\right)}{-4x+3}\ge0\)
d/ \(\dfrac{2x-5}{3x+2}< \dfrac{3x+2}{2x-5}\)
e/ \(\dfrac{2x^2+x}{1-2x}\ge1-x\)
f/ \(\dfrac{\left(2+x\right)^5.\left(x+1\right).\left(3-x\right)^{11}}{\left(2-x\right).\left(1-x\right)^{20}}\le0\)
Giải các bất phương trình sau
a/ (x+1).(x-1).(3x-6)>0
b/ \(\dfrac{x+3}{x-2}\le0\)
c/ \(\dfrac{\left(2x-5\right).\left(x+2\right)}{-4x+3}\ge0\)
d/ \(\dfrac{2x-5}{3x+2}< \dfrac{3x+2}{2x-5}\)
e/ \(\dfrac{2x^2+x}{1-2x}\ge1-x\)
f/ \(\dfrac{\left(2+x\right)^5.\left(x+1\right).\left(3-x\right)^{11}}{\left(2-x\right).\left(1-x\right)^{20}}\le0\)
a) \(\left(x+1\right)\left(x-1\right)\left(3x-6\right)>0\)
Lập bảng xét dấu ta được kết quả :
\(Bpt\Leftrightarrow\left[{}\begin{matrix}-1< x< 1\\x>2\end{matrix}\right.\)
b) \(\dfrac{x+3}{x-2}\le0\)
Lập bảng xét dấu ta được kết quả :
\(Bpt\Leftrightarrow-3\le x< 2\)
d) \(\dfrac{2x-5}{3x+2}< \dfrac{3x+2}{2x-5}\)
\(\Leftrightarrow\dfrac{2x-5}{3x+2}-\dfrac{3x+2}{2x-5}< 0\)
\(\Leftrightarrow\dfrac{\left(2x-5\right)^2-\left(3x+2\right)^2}{\left(3x+2\right)\left(2x-5\right)}< 0\)
\(\Leftrightarrow\dfrac{\left(2x-5+3x+2\right)\left(2x-5-3x-2\right)}{\left(3x+2\right)\left(2x-5\right)}< 0\)
\(\Leftrightarrow\dfrac{-\left(5x-3\right)\left(x+7\right)}{\left(3x+2\right)\left(2x-5\right)}< 0\)
Lập bảng xét dấu ta được kết quả :
\(Bpt\Leftrightarrow\left[{}\begin{matrix}-7< x< -\dfrac{2}{3}\\\dfrac{5}{3}< x< \dfrac{5}{2}\end{matrix}\right.\)
giải các phương trình sau
a) \(2^{x^2-2x+1}=1\)
b) \(7^{x^2+7x}=5764801\)
c) \(6^{x^2+12x}=6^{7x}\)
d) \(\left(\dfrac{1}{3}\right)^{x-1}=3^{2x-5}\)
e) \(\left(\dfrac{1}{5}\right)^{3x+5}=5^{2x+1}\)
a: \(2^{x^2-2x+1}=1\)
=>\(2^{\left(x-1\right)^2}=2^0\)
=>\(\left(x-1\right)^2=0\)
=>x-1=0
=>x=1
b: \(7^{x^2+7x}=5764801\)
=>\(7^{x^2+7x}=7^8\)
=>\(x^2+7x=8\)
=>\(x^2+7x-8=0\)
=>(x+8)(x-1)=0
=>\(\left[{}\begin{matrix}x+8=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=1\end{matrix}\right.\)
c: \(6^{x^2+12x}=6^{7x}\)
=>\(x^2+12x=7x\)
=>\(x^2+5x=0\)
=>x(x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
d: \(\left(\dfrac{1}{3}\right)^{x-1}=3^{2x-5}\)
=>\(3^{-x+1}=3^{2x-5}\)
=>-x+1=2x-5
=>-x-2x=-5-1
=>-3x=-6
=>x=2
e: \(\left(\dfrac{1}{5}\right)^{3x+5}=5^{2x+1}\)
=>\(5^{-3x-5}=5^{2x+1}\)
=>-3x-5=2x+1
=>-5x=6
=>\(x=-\dfrac{6}{5}\)
Giải bất phương trình :
\(f'\left(x\right)< g'\left(x\right)\)
Biết \(f\left(x\right)=\frac{1}{2}.5^{2x+1};g\left(x\right)=5^x+4x\ln5\)
Ta có : \(f\left(x\right)=\frac{1}{2}5^{2x+1}\Rightarrow f'\left(x\right)=5^{2x+1}\ln5\)
\(g\left(x\right)=5^x+4x\ln5\Rightarrow g'\left(x\right)=5^x\ln5+4\ln5=\left(5^x+4\right)\ln5\)
\(f'\left(x\right)< g'\left(x\right)\Leftrightarrow5^{2x+1}\ln5< \left(5^x+4\right)\ln5\)
\(\Leftrightarrow5^{2x+1}< 5^x+4\)
\(\Leftrightarrow5\left(5^x\right)^2-5^x-4< 0\)
\(\Leftrightarrow-\frac{4}{5}< 5^x< 1=5^0\)
\(\Leftrightarrow x< 0\) là nghiệm của bất phương trình