a: \(2^{x^2-2x+1}=1\)
=>\(2^{\left(x-1\right)^2}=2^0\)
=>\(\left(x-1\right)^2=0\)
=>x-1=0
=>x=1
b: \(7^{x^2+7x}=5764801\)
=>\(7^{x^2+7x}=7^8\)
=>\(x^2+7x=8\)
=>\(x^2+7x-8=0\)
=>(x+8)(x-1)=0
=>\(\left[{}\begin{matrix}x+8=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=1\end{matrix}\right.\)
c: \(6^{x^2+12x}=6^{7x}\)
=>\(x^2+12x=7x\)
=>\(x^2+5x=0\)
=>x(x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
d: \(\left(\dfrac{1}{3}\right)^{x-1}=3^{2x-5}\)
=>\(3^{-x+1}=3^{2x-5}\)
=>-x+1=2x-5
=>-x-2x=-5-1
=>-3x=-6
=>x=2
e: \(\left(\dfrac{1}{5}\right)^{3x+5}=5^{2x+1}\)
=>\(5^{-3x-5}=5^{2x+1}\)
=>-3x-5=2x+1
=>-5x=6
=>\(x=-\dfrac{6}{5}\)