phân tích đa thức thành nhân tử 4xy-x-4y2+25 ****
Phân tích đa thức thành nhân tử
1, a6 + b3
2, x2 – 10x + 25
3, 8x3 – \(\dfrac{1}{8}\)
4, x2 + 4xy + 4y2
1, \(a^6+b^3=\left(a^2+b\right)\left(a^4-a^2b+b^2\right)\)
2, \(x^2-10x+25=\left(x-5\right)^2\)
3, \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
4, \(x^2+4xy+4y^2=\left(x+2y\right)^2\)
1) \(a^6+b^3=\left(a^2\right)^3+b^3=\left(a^2+b\right)\left(a^4-a^2b+b^2\right)\)
2) \(x^2-10x+25=\left(x-5\right)^2\)
3) \(8x^3-\dfrac{1}{8}=\left(2x\right)^3-\left(\dfrac{1}{3}\right)^3=\left(2x-\dfrac{1}{3}\right)\left(4x^2+\dfrac{2x}{3}+\dfrac{1}{4}\right)\)
4) \(x^2+4xy+4y^2=\left(x+2y\right)^2\)
1: \(a^6+b^3=\left(a^2+b\right)\left(a^4-a^2b+b^2\right)\)
2: \(x^2-10x+25=\left(x-5\right)^2\)
3: \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
4: \(x^2+4xy+4y^2=\left(x+2y\right)^2\)
Bài 1 phân tích đa thức thành nhân tử
X2+4xy+4y2-25
\(x^2+4xy+4y^2-25\)
\(=\left(x^2+4xy+4y^2\right)-25\)
\(=\left(x+2y\right)^2-5^2\)
\(=\left(x+2y+5\right)\left(x+2y-5\right)\)
Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung:
-x2-4xy-4y2
= \(-\left(x^2+4xy+4y^2\right)\)
= \(-\left(x+2y\right)^2\)
x2–4xy +4y2–z2+ 2zt –t2 = ??? (Phân tích đa thức thành nhân tử)
x2 - 4xy + 4y2 - z2 + 2zt - t2
= (x2 - 4xy + 4y2) - (z2 - 2zt + t2)
= (x - 2y)2 - (z - t)2
= (x - 2y + z - t)(x - 2y - z + t)
Câu 56:Đa thức x(x – 7) + (7 – x)2 được phân tích thành nhân tử là:
A. (x - 7)(2x + 7) B. (x - 7)(2x - 7) C. 7(x - 7) D. (x - 7)(x + 7)
Câu 57:Phân tích đa thức x2 – 16 – 4xy + 4y2 thành nhân tử ta được:
A. (x – 2y + 4)(x + 2y + 4) B. (x – 2y + 4)(x – 2y – 4)
C. (x – 2y + 4)(x + 2y + 4) D. Không phân tích được
Câu 58:Đa thức (x – 4)2 + (x – 4) được phân tích thành nhân tử là:
A. (x + 4)(x – 4) B. (x – 4)(x – 3) C. (x + 4)(x + 3) D. (x – 4)(x – 5)
Phân tích đa thức thành nhân tử: (Giup e vs nhaaa)
a) 4xy - 20x3y2
b) x2 - y2 + 3x - 3y
c) x2 - ax + xy - ay
d) x2 - 36 + 4xy + 4y2
a: \(=4xy\left(1-5x^2y\right)\)
b: \(=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\)
c: \(=x\left(x-a\right)+y\left(x-a\right)=\left(x-a\right)\left(x+y\right)\)
d: \(=\left(x+2y\right)^2-36=\left(x+2y+6\right)\left(x+2y-6\right)\)
Phân tích đa thức thành nhân tử
x2 + 4y2 -5x -10y + 4xy
Phân tích đa thức sau thành nhân tử:x2+4xy-4z2+4y2
\(=\left(x+2y\right)^2-4z^2=\left(x+2y+2z\right)\left(x+2y-2z\right)\)
Câu 1:(2 điểm) Phân tích thành nhân tử:
x2 + 4y2 + 4xy - 16
Câu 2:Phân tích đa thức thành nhân tử:
x3 + x2 + y3 + xy
Câu 1:
$x^2+4y^2+4xy-16=[x^2+(2y)^2+2.x.2y]-16$
$=(x+2y)^2-4^2=(x+2y-4)(x+2y+4)$
Câu 2:
$x^3+x^2+y^3+xy=(x^3+y^3)+(x^2+xy)$
$=(x+y)(x^2-xy+y^2)+x(x+y)=(x+y)(x^2-xy+y^2+x)$
Câu 1:
\(x^2+4y^2+4xy-16\)
\(=\left(x+2y\right)^2-16\)
\(=\left(x+2y+4\right)\left(x+2y-4\right)\)
Câu 2:
\(x^3+x^2+y^3+xy\)
\(=\left(x^3+y^3\right)\left(x^2+xy\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+x\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+x\right)\)
C1:x^2+4y^2+4xy-16
=[x^2+4xy+(2y)^2]-16
=(x+2y)^2-4^2
=(x+2y-4)(x+2y+4)
C2: x^3+x^2+y^3+xy
=(x^2+xy)+(x^3+y^3)
=x(x+y)+(x+y)(x^2-xy+y^2)
=(x+y)(x+x^2-xy+y^2)
bài này ra lâu r nhưng ngứa tay nên giải luôn=)))))
Phân tích đa thức thành nhân tử: x^2-25-4xy+4y^2
\(x^2-25-4xy+4y^2\)
\(=\left(x^2-4xy+4y^2\right)-25\)
\(=\left[x^2-2\cdot x\cdot2y+\left(2y\right)^2\right]-25\)
\(=\left(x-2y\right)^2-5^2\)
\(=\left(x-2y-5\right)\cdot\left(x-2y+5\right)\)