Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mỹ Duyên
Xem chi tiết
Hoàng Phúc
Xem chi tiết
alibaba nguyễn
15 tháng 2 2017 lúc 8:07

Làm chi mà khó hiểu thế. Làm lại bài của Thắng Nguyễn cho dễ hiểu. 

\(P=\left(\frac{1}{x}+\frac{2}{y}+\frac{5}{z}\right)\sqrt{xy+yz+zx}\)

\(\Leftrightarrow P^2=\left(\frac{1}{x}+\frac{2}{y}+\frac{5}{z}\right)^2.\left(xy+yz+zx\right)\)

Đặt \(\hept{\begin{cases}x=\frac{a}{3}\\y=\frac{b}{2}\\z=c\end{cases}}\)thì ta có

\(P^2=\left(\frac{3}{a}+\frac{4}{b}+\frac{5}{c}\right)^2.\left(\frac{ab}{6}+\frac{bc}{2}+\frac{ca}{3}\right)\)

\(=\frac{1}{12}\left(\frac{3}{a}+\frac{4}{b}+\frac{5}{c}\right)^2.\left(2ab+6bc+4ca\right)\)

Ta có: \(\frac{3}{a}+\frac{4}{b}+\frac{5}{c}=\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}\ge12.\sqrt[12]{\frac{1}{a^3.b^4.c^5}}\)

\(\Rightarrow\left(\frac{3}{a}+\frac{4}{b}+\frac{5}{c}\right)^2\ge12^2.\sqrt[12]{\frac{1}{a^6.b^8.c^{10}}}\)

Ta lại có: \(2ab+6bc+4ca\ge12.\sqrt[12]{\left(ab\right)^2.\left(bc\right)^6.\left(ca\right)^4}=12.\sqrt[12]{a^6.b^8.c^{10}}\)(tách y hệt cái trên)

Từ đây ta có: \(P^2\ge\frac{1}{12}.12^2.\sqrt[12]{\frac{1}{a^6.b^8.c^{10}}}.12\sqrt[12]{a^6.b^8.c^{10}}=12^2\)

\(\Rightarrow P\ge12\)

Dấu = xảy ra khi a = b = c hay z = 2y = 3x

Thắng Nguyễn
10 tháng 2 2017 lúc 21:33

đề? \(\left(\frac{1}{x}+\frac{2}{y}+\frac{5}{z}\right)\sqrt{xy+yz+xz}\)

Thắng Nguyễn
10 tháng 2 2017 lúc 22:14

Đặt \(\hept{\begin{cases}a=\frac{x}{3}\\b=\frac{y}{2}\\c=z\end{cases}}\). Do đó, áp dụng BĐT AM-GM ta có:

\(\left(\frac{1}{a}+\frac{2}{b}+\frac{5}{c}\right)^2=\left(\frac{1}{a}+\frac{2}{b}+\frac{5}{c}\right)^2\left(ab+ac+bc\right)\)

\(=\frac{1}{12}\left(\frac{3}{x}+\frac{4}{y}+\frac{5}{z}\right)^2\left(2xy+4xz+6yz\right)\)

\(\ge\frac{1}{12}\cdot12^3\sqrt[12]{x^{-6}y^{-8}z^{-10}x^2y^2x^4z^4y^6z^6}=144\)

Vì vậy \(\frac{1}{a}+\frac{2}{b}+\frac{5}{c}\ge12\) 

Dấu "=" xảy ra khi \(x=y=z=1\) thì P đạt GTNN là 12

L N T 39
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 3 2021 lúc 13:25

\(B=\dfrac{1}{x^3+y^3}+\dfrac{1}{xy\left(x+y\right)}=\dfrac{1}{x^3+y^3}+\dfrac{3}{3xy\left(x+y\right)}\)

\(B\ge\dfrac{\left(1+\sqrt{3}\right)^2}{x^3+y^3+3xy\left(x+y\right)}=\dfrac{4+2\sqrt{3}}{\left(x+y\right)^3}=4+2\sqrt{3}\)

\(B_{min}=4+2\sqrt{3}\) khi \(\left(x;y\right)=\left(\dfrac{3+\sqrt{3}-\sqrt[4]{12}}{6+2\sqrt{3}};\dfrac{3+\sqrt{3}+\sqrt[4]{12}}{6+2\sqrt{3}}\right)\) và hoán vị

 

Akai Haruma
12 tháng 3 2021 lúc 13:35

Lời giải:

Áp dụng BĐT Cauchy-Shwarz:

$B=\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{(x+y)^3-3xy(x+y)}+\frac{1}{xy}$

$=\frac{1}{1-3xy}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{3}{3xy}$

$\geq \frac{(1+\sqrt{3})^2}{1-3xy+3xy}=(1+\sqrt{3})^2$

Vậy $B_{\min}=(1+\sqrt{3})^2$

Dấu "=" xảy ra khi $xy=\frac{1}{2}-\frac{1}{2\sqrt{3}}$

Nguyễn Thị Mai Anh
Xem chi tiết
Itachi Uchiha
Xem chi tiết
Itachi Uchiha
20 tháng 5 2017 lúc 20:13

Cho các số thực dương x,y nha

Lầy Văn Lội
20 tháng 5 2017 lúc 20:30

bên h h có đấy

Itachi Uchiha
21 tháng 5 2017 lúc 10:49

chỗ nào z??

Uzumaki Naruto
Xem chi tiết
Nguyễn Linh Chi
27 tháng 3 2020 lúc 12:19

Với y = 0 ta có: \(x^2=\frac{1}{2}\)=> M = 1/2 (1)

Với y khác 0

Ta có: \(M=x^2-xy+y^2=\frac{x^2-xy+y^2}{2x^2-xy+y^2}=\frac{\left(\frac{x}{y}\right)^2-\frac{x}{y}+1}{2\left(\frac{x}{y}\right)^2-\frac{x}{y}+1}\)

Đặt: \(\frac{x}{y}=t\)

Ta có: \(M=\frac{t^2-t+1}{2t^2-t+1}\Leftrightarrow\left(2M-1\right)t^2+\left(1-M\right)t+M-1=0\)(1)

+) Nếu 2M - 1 = 0 <=> M = 1/2 (2) 

khi đó: t = 1

+) Nếu M khác 1/2

(1) có \(\Delta=\left(1-M\right)^2-4\left(2M-1\right)\left(M-1\right)=-7M+10M-3\)

Để (1) có nghiệm thì \(\Delta\ge0\)<=> \(\frac{3}{7}\le M\le1\)(3)

Từ (1); (2); (3) ta có GTNN của M = 3/7 

Dấu "=" xảy ra <=> t = 2 hay \(\frac{x}{y}=2\Leftrightarrow x=2y\)

Thay vào \(2x^2-xy+y^2=1.\) ta có: \(8y^2-2y^2+y^2=1.\)

<=> \(y=\pm\frac{1}{\sqrt{7}}\)

Với \(y=\frac{1}{\sqrt{7}}\Rightarrow x=\frac{2}{\sqrt{7}}\)

Với \(y=\frac{-1}{\sqrt{7}}\Rightarrow x=\frac{-2}{\sqrt{7}}\)

Kết luận vậy min M = 1 tại ( x ; y ) \(\in\left\{\left(\frac{2}{\sqrt{7}};\frac{1}{\sqrt{7}}\right);\left(\frac{-2}{\sqrt{7}};\frac{-1}{\sqrt{7}}\right)\right\}\)

Khách vãng lai đã xóa
Dieren
Xem chi tiết
Aurora
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 3 2021 lúc 17:17

\(x\ge2y\Rightarrow\dfrac{x}{y}\ge2\)

\(M=\dfrac{x}{y}+\dfrac{y}{x}=\dfrac{x}{4y}+\dfrac{y}{x}+\dfrac{3}{4}.\dfrac{x}{y}\ge2\sqrt{\dfrac{xy}{4xy}}+\dfrac{3}{4}.2=\dfrac{5}{2}\)

\(M_{min}=\dfrac{5}{2}\) khi \(x=2y\)

Kyan
Xem chi tiết
Phạm Hoàng Việt
12 tháng 2 2016 lúc 20:42

cau 2 chung minh cai gi vay ban