cho 2 số dương x,y tm xy=1 , tìm GTNN của A= x^2+3x+y^2+3y + 9/(x^2+y^2+1)
CHO 2 SỐ DƯƠNG X,Y THỎA XY=3. TÌM GTNN CỦA P=3/X+9/Y-26/(3X+Y)
Cho x,y là 2 số dương TM : 2xy - 4 = x + y
Tìm GTNN:
\(P=xy+\frac{1}{x^2}+\frac{1}{y^2}\)
Cho x,y,z là các số thực dương thỏa mãn: x^2+y^2+z^2=2.Tìm GTNN và GTLN của P=\(\dfrac{x}{2+yz}+\dfrac{y}{2+zx}+\dfrac{z}{2+xy}\)
cho x,y là 2 số thực dương thỏa mãn x+y=1. tìm GTNN của P=20(x3y+xy3)+(2/xy)+2015
cho x,y,z là 3 số dương tm \(^{x^2+y^2+z^2=2016}\).Tìm GTNN P=\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\)
cho x,y là các số thực dương thỏa mãn xy=1 tìm gtnn của bt:
P= \(\left(x+y+1\right)\left(x^2+y^2\right)+\frac{4}{x+y}\)
cho các số thực dương x,y tm \(\left(x+y-1\right)^2=xy\)
Tìm min \(P=\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}\)
Với x, y là số thực dương TM X+Y+XY=15 . Tìm Min P=X2+Y2