Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nood
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 5 2023 lúc 20:16

a:Sửa đề: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)

=>3x-9-10x+2=-4

=>-7x-7=-4

=>-7x=3

=>x=-3/7

b: =>\(\dfrac{5-x}{4x\left(x-2\right)}+\dfrac{7}{8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8\left(x-2\right)}\)

=>\(2\left(5-x\right)+7\left(x-2\right)=4\left(x-1\right)+x\)

=>10-2x+7x-14=4x-4+x

=>5x-4=5x-4

=>0x=0(luôn đúng)

Vậy: S=R\{0;2}

Nguyễn Thị Ngọc Mai
Xem chi tiết
Trần Thanh Phương
7 tháng 11 2018 lúc 6:15

a) ĐKXĐ : x khác 2/5

\(\frac{2x+3}{2-5x}\le0\)

\(\Leftrightarrow2x+3\le2-5x\)

\(\Leftrightarrow7x\le-1\)

\(\Leftrightarrow x\le\frac{-1}{7}\left(\text{thỏa mãn}\right)\)

b) \(\left|5x+3\right|=\left|x+2\right|\)

\(\Rightarrow\orbr{\begin{cases}5x+3=x+2\\5x+3=-x-2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}4x=-1\\6x=-5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-1}{4}\\x=\frac{-5}{6}\end{cases}}\)

P.s: cái này chưa học có j sai góp ý hộ nha ^^

kudo shinichi
7 tháng 11 2018 lúc 18:06

ĐKXĐ: \(x\ne\frac{2}{5}\)

\(\frac{2x+3}{x-5x}\le0\)

Xét 2 trường hợp

TH1: \(\hept{\begin{cases}2x+3\ge0\\2-5x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-\frac{3}{2}\\x>\frac{2}{5}\end{cases}}}\Leftrightarrow x>\frac{2}{5}\)

TH2: \(\hept{\begin{cases}2x+3\le0\\2-5x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-\frac{3}{2}\\x< \frac{2}{5}\end{cases}}}\Leftrightarrow x\le-\frac{3}{2}\)

Vậy \(\orbr{\begin{cases}x>\frac{2}{5}\\x\le-\frac{3}{2}\end{cases}}\)

P/S: chưa học => trình bày thiếu sót ( sai ) => sửa hộ~

Phạm Thị Kiều Diễm
16 tháng 4 2021 lúc 14:59

vfhgjhgjhhgjfdgfhgfrdtfytrftrrtfytrfyt

Khách vãng lai đã xóa
bui tri dung
Xem chi tiết
Tạ Đức Hoàng Anh
22 tháng 3 2020 lúc 20:21

a) Ta có: \(\frac{3x-5}{2}\ge5x\)

         \(\Leftrightarrow3x-5\ge10x\)

         \(\Leftrightarrow3x-10x\ge5\)

         \(\Leftrightarrow-7x\ge5\)

         \(\Leftrightarrow x\le-\frac{5}{7}\)

Vậy tập nghiệm của bất phương trình là: \(\left\{x|x\le-\frac{5}{7}\right\}\)

b) Ta có: \(x.\left(2+x\right)-x^2+8x< 5x+20\)

       \(\Leftrightarrow2x+x^2-x^2+8x-5x< 20\)

       \(\Leftrightarrow5x< 20\)

       \(\Leftrightarrow x< 4\)

Vậy tập nghiệm của bất phương trình là: \(\left\{x|x< 4\right\}\)

Khách vãng lai đã xóa
KAl(SO4)2·12H2O
24 tháng 3 2020 lúc 22:51

a) (3x - 5)/2 >= 5x

<=> 3x - 5 >= 10x

<=> -5 >= 10x - 3x

<=> -5 >= 7x

<=> x =< -5/7

b) x(2 + x) - x^2 + 8x < 5x + 20

<=> 2x + x^2 - x^2 + 8x < 5x + 20

<=> 10x < 5x + 20

<=> 10x - 5x < 20

<=> 5x < 20

<=> x < 4

Khách vãng lai đã xóa
Sách Giáo Khoa
Xem chi tiết
Vân Kính
22 tháng 4 2017 lúc 12:07

Giải bài 32 trang 48 SGK Toán 8 Tập 2 | Giải toán lớp 8

Đoàn Như Quỳnhh
5 tháng 4 2018 lúc 22:17

a) \(8x+3\left(x+1\right)>5x-\left(2x-6\right)\)

\(8x + 3x + 3 > 5x - 2x + 6\)

\(11x+3>3x+6\)

\(11x - 3x > 6 -3\)

\(8x > 3\)

\(8x.\dfrac{1}{8}>3.\dfrac{1}{8}\)

\(x>\dfrac{3}{8}\)

S = \(\left\{x\backslash x>\dfrac{3}{8}\right\}\)

b) \(2x(6x-1) > (3x -2)(4x+3)\)

\(12x^2 - 2x > 12x^2 +9x -8x -6\)

\(12x^2 - 2x > 12x^2 + x - 6\)

\(-2x-x>12x^2 -6-12x^2\)

\(- 3x > -6 \)

\(x > 2\)

S = {x / x > 2}

nguyen the vuong
31 tháng 3 2019 lúc 21:52

a,\(8x+3\left(x+1\right)>5x-\left(2x-6\right)\)

\(\Leftrightarrow8x+3x+3>5x-2x+6\)

\(\Leftrightarrow8x+3x-5x+2x>6-3\)

\(\Leftrightarrow8x>3\)

\(\Leftrightarrow x>\frac{3}{8}\)

b,\(2x\left(6x-1\right)>\left(3x-2\right)\left(4x+3\right)\)

\(\Leftrightarrow12x^2-2x>12x^2+9x-8x-6\)

\(\Leftrightarrow12x^2-2x-12x^2-9x+8x>-6\)

\(\Leftrightarrow-3x>-6\)

\(\Leftrightarrow x>2\)

Ngoc Anh Thai
Xem chi tiết
hnamyuh
26 tháng 3 2021 lúc 10:21

Bài 4 :

24 phút = \(\dfrac{24}{60} = \dfrac{2}{5}\) giờ

Gọi thời gian dự định đi từ A đến B là x(giờ) ; x > 0 

Suy ra quãng đường AB là 36x(km)

Khi vận tốc sau khi giảm là 36 -6 = 30(km/h)

Vì giảm vận tốc nên thời gian đi hết AB là x + \(\dfrac{2}{5}\)(giờ)

Ta có phương trình: 

\(36x = 30(x + \dfrac{2}{5})\\ \Leftrightarrow x = 2\)

Vậy quãng đường AB dài 36.2 = 72(km)

 

꧁༺β£ɑℭƙ £❍ζʊꜱ༻꧂
26 tháng 3 2021 lúc 10:37

undefined

hnamyuh
26 tháng 3 2021 lúc 10:46

Bài 3 : 

\(A = -x^2 + 2x + 9 = -(x^2 -2x - 9) \\= -(x^2 - 2x + 1 + 10) = -(x^2 -2x + 1)+ 10\\=-(x-1)^2 + 10\)

Vì : \((x-1)^2 \geq 0\) ∀x \(\Leftrightarrow -(x-1)^2 \)≤ 0 ∀x \(\Leftrightarrow -(x-1)^2 + 10\) ≤ 10

Dấu "=" xảy ra khi và chỉ khi x - 1 = 0 ⇔ x = 1

Vậy giá trị nhỏ nhất của A là 10 khi x = 1

 

Kinder
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 2 2021 lúc 17:06

1.

ĐKXĐ: \(x\ge-\dfrac{1}{3}\)

\(\Leftrightarrow3x^2-3x+\left(x+1-\sqrt{3x+1}\right)+\left(x+2-\sqrt{5x+4}\right)=0\)

\(\Leftrightarrow3\left(x^2-x\right)+\dfrac{x^2-x}{x+1+\sqrt{3x+1}}+\dfrac{x^2-x}{x+2+\sqrt{5x+4}}=0\)

\(\Leftrightarrow\left(x^2-x\right)\left(3+\dfrac{1}{x+1+\sqrt{3x+1}}+\dfrac{1}{x+2+\sqrt{5x+4}}\right)=0\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
22 tháng 2 2021 lúc 17:10

2.

Đặt \(\left\{{}\begin{matrix}2x=a\\\sqrt[3]{2-8x^3}=b\end{matrix}\right.\)

Ta được hệ:

\(\left\{{}\begin{matrix}\left(2a-1\right)b=a\\a^3+b^3=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2ab\\\left(a+b\right)^3-3ab\left(a+b\right)=2\end{matrix}\right.\)

\(\Rightarrow8\left(ab\right)^3-6\left(ab\right)^2=2\)

\(\Leftrightarrow\left(ab-1\right)\left[4\left(ab\right)^2+ab+1\right]=0\)

\(\Leftrightarrow ab=1\Rightarrow a+b=2\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2\\ab=1\end{matrix}\right.\) \(\Leftrightarrow a=b=1\)

\(\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\)

Nguyễn Thị Ngọc Mai
Xem chi tiết
Lê Minh Hưng
2 tháng 3 2019 lúc 21:25

Cho x,y,z là các sô dương.Chứng minh rằng x/2x+y+z+y/2y+z+x+z/2z+x+y<=3/4

Nguyễn Thị Ngọc Mai
Xem chi tiết
2012 SANG
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 4 2023 lúc 20:40

a: =>2x^2+8x-3x-12<2x^2+2

=>5x<14

=>x<14/5

b: =>\(\dfrac{9x-3-\left(5x+1\right)\left(x-2\right)}{3\left(x-2\right)}-4>0\)

=>\(\dfrac{9x-3-5x^2+10x-x+2-12\left(x-2\right)}{3\left(x-2\right)}>0\)

=>\(\dfrac{-5x^2+18x-1-12x+24}{3\left(x-2\right)}>0\)

=>\(\dfrac{-5x^2+6x+23}{x-2}>0\)

TH1: x-2>0 và -5x^2+6x+23>0

=>x>2 và \(\dfrac{3-2\sqrt{31}}{5}< x< \dfrac{3+2\sqrt{31}}{5}\)

=>\(2< x< \dfrac{3+2\sqrt{31}}{5}\)

TH2: x-2<0 và -5x^2+6x+23<0

=>x<2 và \(\left[{}\begin{matrix}x< \dfrac{3-2\sqrt{31}}{5}\\x>\dfrac{3+2\sqrt{31}}{5}\end{matrix}\right.\)

=>\(x< \dfrac{3-2\sqrt{31}}{5}\)