Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Huy
Xem chi tiết
Hoàng Huy
Xem chi tiết
Trúc Giang
25 tháng 7 2021 lúc 20:28

undefined

Nguyễn Lê Phước Thịnh
25 tháng 7 2021 lúc 20:33

Ta có: \(-x^2-3x-4\)

\(=-\left(x^2+3x+4\right)\)

\(=-\left(x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\right)\)

\(=-\left(x+\dfrac{3}{2}\right)^2-\dfrac{7}{4}< 0\forall x\)

Hoàng Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 7 2021 lúc 20:31

Ta có: \(-x^2+10x-27\)

\(=-\left(x^2-10x+27\right)\)

\(=-\left(x^2-10x+25+2\right)\)

\(=-\left(x-5\right)^2-2< 0\forall x\)

Lâm Ánh Yên
Xem chi tiết
Hồng Phúc
2 tháng 3 2021 lúc 12:39

Áp dụng BĐT Cosi:

\(\dfrac{x^2}{1+16x^4}+\dfrac{y^2}{1+16y^4}\le\dfrac{x^2}{8x^2}+\dfrac{y^2}{8y^2}=\dfrac{1}{4}\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=\pm\dfrac{1}{2}\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)

Ngô Nhất Lan
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 12 2022 lúc 14:35

a: f(x1)+f(x2)=a*x1+a*x2=a(x1+x2)

f(x1+x2)=a*(x1+x2)

=>f(x1)+f(x2)=f(x1+x2)

b: f(kx)=a*kx=ak*x

k*f(x)=k*ax=x*ka

=>f(kx)=k*f(x)

c: f(x1)*f(x2)=f(x1*x2)

=>ax1*ax2=a*(x1*x2)

=>a^2-a=0

=>a=1

Hara Nisagami
Xem chi tiết
lê thị hương giang
24 tháng 6 2019 lúc 13:40

\(3x^2-4x+50\)

\(=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)+\frac{146}{3}\)

\(=3\left(x-\frac{2}{3}\right)^2+\frac{146}{3}\ge\frac{146}{3}>0\) (đpcm)

duong thi thanh thuy
Xem chi tiết
Duy Đỗ Ngọc Tuấn
13 tháng 6 2018 lúc 0:13

I not sure for this answer if have any trouble you can ask me

a)\(\sqrt{x^2-4x+5}\ge\forall x\)

\(\Leftrightarrow\sqrt{x^2-4x+4+1}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)}^2+1\)

\(\sqrt{\left(x+1\right)^2}\ge0\forall x\)

nên \(\sqrt{\left(x+1\right)^2}+1>0\forall x\)

Komorebi
13 tháng 6 2018 lúc 8:57

câu a chưa rõ đề, bắt chứng minh nhưng ko biết \(\ge\) cái j ms đc chứ ạ ?

kokokokoko
Xem chi tiết
Akai Haruma
23 tháng 11 2018 lúc 11:19

Lời giải:

\(-x^2+4x-5=-(x^2-4x+5)=-[(x^2-4x+4)+1]=-[(x-2)^2+1]\)

Ta thấy \((x-2)^2\geq 0, \forall x\in\mathbb{Z}\Rightarrow (x-2)^2+1\geq 1>0, \forall x\in \mathbb{Z}\)

\(\Rightarrow -x^2+4x-5=-[(x-2)^2+1]< 0, \forall x\in\mathbb{Z}\)

Ta có đpcm

Đặng vân anh
Xem chi tiết
Hoàng Thủy Tiên
20 tháng 7 2016 lúc 13:54

a) \(A=x^2+2x+3=x^2+2x+1+2\)

\(=\left(x+1\right)^2+2\ge2\)

Vậy A luôn dương với mọi x

b) \(B=-x^2+4x-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+2^2\right)-1\)

\(=-\left(x-2\right)^2-1\le-1\)

Vậy B luôn âm với mọi x

Đoàn Thị Huyền Đoan
20 tháng 7 2016 lúc 14:01

a)\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2\)

Vậy x2 +2x+3 luôn dương.

b)\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\le-1\)

Vậy -x2 +4x-5 luôn luôn âm.

Cao Minh Ngọc
7 tháng 8 lúc 16:12

a.x2+ 2x+ 3

=x2+ 2.x.1+ 12- 12+ 3

= (x+1)2 -1+3

= (x+1)2+ 2

Ta có: (x+1)≥0

           (x+1)2+ 3≥ 3>0

⇒x2+ 2x+ 3>0 mọi x

Vậy x2+ 2x+3>0 mọi x

b. -x2+ 4x- 5

= - (x2- 4x +5)

= - (x2- 2.x.2+ 22- 22+ 5)

= - ((x- 2)2- 4+ 5)

= - ((x- 2)2+1)

= -(x- 2)2 -1

Ta có: (x-2)2 ≥0

         - (x-2)2 ≤0

         - (x-2)+1≤ 1

⇒ -x2+ 4x- 5 <0 mọi x

Vậy -x2+ 4x- 5 <0 mọi x