Lời giải:
\(-x^2+4x-5=-(x^2-4x+5)=-[(x^2-4x+4)+1]=-[(x-2)^2+1]\)
Ta thấy \((x-2)^2\geq 0, \forall x\in\mathbb{Z}\Rightarrow (x-2)^2+1\geq 1>0, \forall x\in \mathbb{Z}\)
\(\Rightarrow -x^2+4x-5=-[(x-2)^2+1]< 0, \forall x\in\mathbb{Z}\)
Ta có đpcm
Lời giải:
\(-x^2+4x-5=-(x^2-4x+5)=-[(x^2-4x+4)+1]=-[(x-2)^2+1]\)
Ta thấy \((x-2)^2\geq 0, \forall x\in\mathbb{Z}\Rightarrow (x-2)^2+1\geq 1>0, \forall x\in \mathbb{Z}\)
\(\Rightarrow -x^2+4x-5=-[(x-2)^2+1]< 0, \forall x\in\mathbb{Z}\)
Ta có đpcm
Chứng minh rằng: x2 - 2x +3 ≥ 2 với mọi số thực x
chứng minh rằng :
a, \(a^2\left(a+1\right)+2a\left(a+1\right)\) chia hết cho 6 với số a nguyên
b, a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên
c,\(x^2-x+1>0\) với mọi \(x\)
d,\(-x^2+4x-5< 0\)với mọi \(x\)
a) Theo a2 + b2 + c2 = ab + bc + ca
Chứng minh rằng a = b = c
b) Chứng minh rằng x2 + x + 1, x2 - x + 1 luôn dương với mọi x \(\in\) R
c) Chứng minh rằng x2 -xy + y2 luôn dương với mọi xy không đồng thời bằng 0
Chứng minh rằng biểu thức sau không âm\(\forall\)x,y,z.
M=4x(x+y)(x+y+z)(x+z)+y2z2
Giúp mình mới
giúp mình với mn
tìm x biết:
a)x2 + 3x = 0 b) x3 – 4x = 0
c) 5x(x-1) = x-1 d) 2(x+5) - x2-5x = 0
e) 2x(x-5)-x(3+2x)=26 f) 5x.(x – 2012) – x + 2012 = 0
Câu 5: Chứng minh rằng giá trị của biểu thức sau luôn dương với mọi giá trị x:
( x-1)(x-3)(x-5)(x-7)+2018
BÀI 1.
CHỨNG MINH:
a) a^2(a+1)+2a(a+1) chia hết cho 6 vs a thuộc Z
b) a(2a-3)-2a(a+1) chia hết cho 5 vs a thuộc Z
BÀI 2.
a) 36x^2-49=0
b(x-1)(x+1)=x+2
c) x^2(x+1)+2x(x+1)=0
d) x(2x-3)-2(3-2x)=0
e) 2x^3(2x-3)-x^2(4x^2-6x+z)=0
f)(x-2)^2-(x+3)^2=5+4(x+1)