M=4(x^2+xy+xz)(x^2+xz+xy+yz)+y^2z^2
=4(x^2+xy+xz)^2+4(x^2+xy+xz)*yz+(yz)^2
=(2x^2+2xy+2xz+yz)^2>=0
M=4(x^2+xy+xz)(x^2+xz+xy+yz)+y^2z^2
=4(x^2+xy+xz)^2+4(x^2+xy+xz)*yz+(yz)^2
=(2x^2+2xy+2xz+yz)^2>=0
Cho \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}=1\)
Tính giá trị của biểu thức M=\(2019+\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{y+x}\)
Cho x+y+z=0. Rút gọn biểu thức:
K=\(\dfrac{x^{2}+y^{2}+z^{2}}{(y-z)^{2}+(z-x)^{2}+(x-y)^{2}}\)
Cho x, y, z đôi một khác nhau và \(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)+\(\dfrac{1}{z}\) = 0
Tính giá trị của biểu thức: M = \(\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
Giúp mk giải bài này với, khó quá :((
1) Cho biểu thức: \(P=\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^3+3x}-\dfrac{x}{3x+9}\right)\)
a. Nêu điều kiện xác định và rút gọn biểu thức P
b. Tìm x để |P| = 2
c. Với x > 3. Tìm GTNN của biểu thức \(M=P\cdot\dfrac{x^2+2x+10}{-3}\)
2) Cho x, y, z thỏa mãn:
\(\dfrac{19}{x+y}+\dfrac{19}{y+z}+\dfrac{19}{z+x}=\dfrac{7x}{y+z}+\dfrac{7z}{x+y}+\dfrac{7y}{x+z}=\dfrac{133}{10}\)Tính giá trị biểu thức M = x + y + z.
tìm giá trị lớn nhất và nhỏ nhất của biểu thức B=x+y+z biết rằng x,y,z là các số thỏa mãn điều kiện y^2+yz+z^2= 2- 3x^2/2
Thực hiện phép tính
a, (x^2+x-6/x^2+4x+3).(x^3-4x-5/x^2-10x-25)
b, x(y^2-z)-y(x-xy)/(x-y)^2+(y-z)^2+(z-x)^2 ÷ xy^2-xz(2y-z)/2(x^3-y^3-z^3-3xyz)
Tính giá trị của biểu thức: A= \(\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}\) nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Chứng minh rằng nếu \(\dfrac{1}{x}-\dfrac{1}{y}-\dfrac{1}{z}=1\) và \(x=y+z\) thì:
\(\dfrac{1}{x^2}+\dfrac{1}{y^2} +\dfrac{1}{z^2}=1\)