Cho x, y, z đôi một khác nhau và \(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)+\(\dfrac{1}{z}\) = 0
Tính giá trị của biểu thức: M = \(\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
Giúp mk giải bài này với, khó quá :((
Cho \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\ne0\). Chứng minh:
\(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{1}{a^2+b^2+c^2}\)
1, Cho x; y; z ≠0 và \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\)+ \(\dfrac{1}{z}\)=\(\dfrac{2}{2x+y+2z}\). Cmr: (2x+y)(y+2z)(z+x)= 0
2, Cho \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\). Cmr: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\)
Gấp ạ, ai giúp mình với!!!!
Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\). CMR: \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
Cho x, y,z là các số khác 0 và đôi một khác nhau thỏa mãn điều kiện: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) Tính giá trị biểu thức \(A=\left(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2zx}+\dfrac{1}{z^2+2xy}\right)\left(x^3+y^5+z^7\right)\)
Cho \(x,y,z\ne0\) và \(a,b,c>0\) sao cho \(ax+by+cz=0\) và \(a+b+c=2017\).
Rút gọn và tính giá trị phân thức:
\(P=\dfrac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
1) Cho biểu thức: \(P=\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^3+3x}-\dfrac{x}{3x+9}\right)\)
a. Nêu điều kiện xác định và rút gọn biểu thức P
b. Tìm x để |P| = 2
c. Với x > 3. Tìm GTNN của biểu thức \(M=P\cdot\dfrac{x^2+2x+10}{-3}\)
2) Cho x, y, z thỏa mãn:
\(\dfrac{19}{x+y}+\dfrac{19}{y+z}+\dfrac{19}{z+x}=\dfrac{7x}{y+z}+\dfrac{7z}{x+y}+\dfrac{7y}{x+z}=\dfrac{133}{10}\)Tính giá trị biểu thức M = x + y + z.
1.Phân tích đa thức thành nhân tử:9(x-1)2-4(2x+3)2
2.CMR \(x^2-x+\dfrac{9}{20}>0\forall x\)
3.Tìm hệ số a để đa thức \(f\left(x\right)=x^3-8x^2+ax-5\) chia hết cho đa thức g(x)=\(x^2-3x+1\)
4.Tìm chữ số x để số \(\overline{2017x}\)chia hết cho 12
5.Tính giá trị của \(A=\dfrac{3x^4-5x^2+3}{x^2}\)khi \(x+\dfrac{1}{x}=\sqrt{2017}\)
6.Tìm các số dương x,y,z thỏa mãn\(\left\{{}\begin{matrix}x^2+y^2+z^2=3\\x+y+z+xy+yz+xz=6\end{matrix}\right.\)
Cho x, y, z là các số thực khác 0 thỏa mãn:
\(x\left(\dfrac{1}{y}+\dfrac{1}{z}\right)+y\left(\dfrac{1}{x}+\dfrac{1}{z}\right)+z\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=-2\) và x3 + y3 + z3 =1
Tính giá trị của biểu thức P= \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)