Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Minh Hiếu
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2020 lúc 17:56

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)

\(\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)

Ta có:

\(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=\dfrac{3a^2b^2c^2}{a^2b^2c^2}=3\)

Đặng Gia Ân
Xem chi tiết
Phạm Ngọc Bích
17 tháng 1 2022 lúc 16:23
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Khách vãng lai đã xóa
Quốc Bảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 0:35

c: Ta có: \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)

\(=a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)

\(=a^4-2a^3b+2ab^3-b^4\)

\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)-2ab\left(a^2-b^2\right)\)

\(=\left(a-b\right)^3\cdot\left(a+b\right)\)

Kwalla
Xem chi tiết
Toru
2 tháng 10 2023 lúc 22:08

\(a^2+b^2+c^2-ab-ac-bc=0\\\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2ac-2bc=0\\\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)=0\\\Leftrightarrow (a-b)^2+(b-c)^2+(a-c)^2=0\)

Ta thấy: \(\left(a-b\right)^2\ge0\forall a;b\)

              \(\left(b-c\right)^2\ge0\forall b;c\)

              \(\left(a-c\right)^2\ge0\forall a;c\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\forall a;b;c\)

Mặt khác: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

nên: \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\a=c\end{matrix}\right.\)

\(\Leftrightarrow a=b=c\left(dpcm\right)\)

#\(Toru\)

Nguyễn Ngọc Anh
Xem chi tiết

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac 

⇒ 2ab + 2bc + 2ac = (a + b + c)2 - (a2 + b2 + c2)

⇒ 2.(ab + bc + ac) = 92 - 53

    2.(ab + bc + ac) = 81 - 53

     2.(ab + bc + ac) = 28

        ab + bc + ac = 28 : 2

        ab + bc + ac = 14

        

Đào Trí Bình
5 tháng 8 2023 lúc 6:43

ab + bc + cd = 14

ILoveMath
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 12 2018 lúc 9:53

Đáp án D

Bài toán trở thành: Tìm M nằm trên đường tròn giao tuyến của mặt cầu  (S) và mặt phẳng (P) sao cho KM lớn nhất

Đoàn Ngọc Bích
Xem chi tiết
alibaba nguyễn
18 tháng 11 2016 lúc 21:47

\(a+b+c=9\)

\(\Leftrightarrow\left(a+b+c\right)^2=81\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=81\)

\(\Leftrightarrow53+2\left(ab+bc+ca\right)=81\)

\(\Leftrightarrow2\left(ab+bc+ca\right)=28\)

\(\Leftrightarrow ab+bc+ca=14\)

Lê Châu Nguyệt
18 tháng 11 2016 lúc 21:49

LÀM NHƯ MK NHÉ

(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)

thay thế vào ta được:

9^2=53=2(ab+bc+ca)

2=(ab+bc+ca)=81-53

=>ab+bc+ca=14.

mk viết bị lộn ac=ca bn sửa lại dùm nha

Công chúa sinh đôi
18 tháng 11 2016 lúc 21:49

(a+b+c)2=a2+b2+c2+2(ab+bc+ca)

thay số trên ta được 

92=53+2(ab+bc+ca)

2(ab+bc+ca)=81-53

ab+bc+ca=14

phamthiminhanh
Xem chi tiết
aiamni
24 tháng 6 2021 lúc 8:07

Trịnh Hoàng Việt
Xem chi tiết
Không Tên
21 tháng 8 2018 lúc 18:50

\(ab+bc+ca=0\)

=>   \(\frac{ab+bc+ca}{abc}=0\)

=>  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

Đặt:  \(\frac{1}{a}=x;\)\(\frac{1}{b}=y;\)\(\frac{1}{c}=z\)

Ta có:   \(x+y+z=0\)

=>  \(x^3+y^3+z^3=3xyz\)  (tự c/m, ko c/m đc ib)

hay  \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

\(B=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc.\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

     \(=abc.\frac{3}{abc}=3\)

Trịnh Hoàng Việt
23 tháng 8 2018 lúc 22:56

thanks