Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đoàn Quang Vinh
Xem chi tiết
Đoàn Quang Vinh
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 11 2021 lúc 10:12

a, Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=25\)

Áp dụng HTL: \(BH=\dfrac{AB^2}{BC}=9\)

b, \(\sin\alpha+\cos\alpha=1,4\Leftrightarrow\left(\sin\alpha+\cos\alpha\right)^2=1,96\)

\(\Leftrightarrow\sin^2\alpha+\cos^2\alpha+2\sin\alpha\cdot\cos\alpha=1,96\\ \Leftrightarrow\sin\alpha\cdot\cos\alpha=\dfrac{1,96-1}{2}=\dfrac{0,96}{2}=0,48\)

\(\sin^4\alpha+\cos^4\alpha=\left(\sin^2\alpha+\cos^2\alpha\right)^2-2\sin^2\alpha\cdot\cos^2\alpha\\ =1^2+2\left(\sin\alpha\cdot\cos\alpha\right)^2=1+2\cdot\left(0,48\right)^2=1,4608\)

Lan Once
Xem chi tiết
Nguyễn Đức Trí
15 tháng 9 2023 lúc 19:26

\(sin\alpha=\dfrac{3}{4}\)

\(sin^2\alpha+cos^2\alpha=1\)

\(\Leftrightarrow cos^2\alpha=1-sin^2\alpha\)

\(\Leftrightarrow cos^2\alpha=1-\dfrac{9}{16}=\dfrac{7}{16}\)

\(\Leftrightarrow cos\alpha=-\dfrac{\sqrt[]{7}}{4}\left(\dfrac{\pi}{2}< \alpha< \pi\right)\)

\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{3}{4}}{-\dfrac{\sqrt[]{7}}{4}}=-\dfrac{3}{\sqrt[]{7}}=-\dfrac{3\sqrt[]{7}}{7}\)

\(\Rightarrow cot\alpha=\dfrac{1}{tan\alpha}=-\dfrac{\sqrt[]{7}}{3}\)

Nguyễn Lê Phước Thịnh
15 tháng 9 2023 lúc 19:27

loading...  

Lê Thanh Tuyền
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 4 2020 lúc 19:13

\(\frac{1}{cos^2a}=1+tan^2a\Rightarrow cos^2a=\frac{1}{1+tan^2a}=\frac{1}{10}\)

a/ \(\frac{sina-cosa}{sina+cosa}=\frac{\frac{sina}{cosa}-\frac{cosa}{cosa}}{\frac{sina}{cosa}+\frac{cosa}{cosa}}=\frac{tana-1}{tana+1}=\frac{3-1}{3+1}\)

b/ \(\frac{2sina+3cosa}{3sina-5cosa}=\frac{3tana+3}{3tana-5}=\frac{3.3+3}{3.3-5}\)

c/ \(\frac{1+2cos^2a}{1-cos^2a-cos^2a}=\frac{1+2cos^2a}{1-2cos^2a}=\frac{1+2.\frac{1}{10}}{1-2.\frac{1}{10}}\)

d/ \(\frac{\left(1-cos^2a\right)^2+\left(cos^2a\right)^2}{1+1-cos^2a}=\frac{\left(1-\frac{1}{10}\right)^2+\left(\frac{1}{10}\right)^2}{2-\frac{1}{10}}\)

nguyễn thị trà giang
Xem chi tiết
Lê Hồng Ngọc
Xem chi tiết
alibaba nguyễn
1 tháng 7 2018 lúc 12:44

E = sin^6 + cos^6 + 3sin^2.cos^2

= (sin^2 + cos^2)(sin^4 - sin^2.cos^2 + cos^4) + 3 sin^2.cos^2

= (sin^2 + cos^2)^2 - 3sin^2.cos^2 + 3sin^2.cos^2

= 1

Huỳnh Diệu Linh
Xem chi tiết
Bảo Ngọc Nguyễn
Xem chi tiết
Akai Haruma
28 tháng 6 2019 lúc 18:05

Bạn không ghi rõ yêu cầu đề bài thì làm sao mà làm?

Nguyễn Đình Hồng Minh
Xem chi tiết