cho A=4x^2+4x+2 b=2x^2-2x+1 c=-15-x^2+6x a,c/m a,b luôn dương
cho A=4x^2+4x+2 b=2x^2-2x+1 c=-15-x^2+6x
b,c/m c luôn âm
c, tìm gtln (gtnn) của a,b,c
Lời giải:
$C=-15-x^2+6x=-6-(x^2-6x+9)=-6-(x-3)^2$
Vì $(x-2)^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow C\leq -6< 0$
Vậy $C$ luôn âm.
cho
A=4x\(^2\)+4x+2
B=2x\(^2\)-2x+1
C=-15-x\(^2\)+6x
chứng minh A,B luôn dương và C luôn âm
Tìm GTLN(GTNN) của A,B,C
a) Ta có: \(A=4x^2+4x+2\)
\(=4x^2+4x+1+1\)
\(=\left(2x+1\right)^2+1>0\forall x\)
b) Ta có: \(B=2x^2-2x+1\)
\(=2\left(x^2-x+\dfrac{1}{2}\right)\)
\(=2\left(x^2-x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\forall x\)
c) Ta có: \(C=-x^2+6x-15\)
\(=-\left(x^2-6x+15\right)\)
\(=-\left(x-3\right)^2-6< 0\forall x\)
C/m rằng các biểu thức sau luôn âm (hoặc luôn dương) với mọi x:
a) A = x^2 + 2x + 2
b) B = x^2 + x + 1
c) C = 2x^2 - 4x + 2
d) D = -x^2 - 6x - 11
e) E = -x^2 + x - 1
f) F = -3x^2 - 6x - 4
\(A=x^2+2x+2=x^2+2x+1+1\)
\(=\left(x+1\right)^2+1>0\)
\(B=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
tự làm tiếp đi chị
cho A=4x^2+4x+2 b=2x^2-2x+1 c=-15-x^2+6x
a,tìm gtln (gtnn) của a,b,c
`A=(2x)^2+2.2x.1+1^2+1=(2x+1)^2+1`
`=> A_(min)=1 <=>x=-1/2`
`B=(\sqrt2x)^2-2.\sqrt2 x . \sqrt2/2 + (\sqrt2/2)^2 + 1/2`
`=(\sqrt2x-\sqrt2/2)^2+1/2`
`=> B_(min)=1/2 <=> x=1/2`
`C=-(x^2-2.x.3+3^2+6)=-(x-3)^2-6`
`=> C_(max)=-6 <=> x=3`
Chứng minh rằng các đa thức sau luôn luôn nhận giá trị dương với mọi giá trị của biến:
a,x^2+4x+7
b,4x^2-4x+5
c,x^2+2y^2+2xy-2y+3
d,2x^2-4x+10
e,x^2+x+1
f,2x^2-6x+5
a : x2 + 4x + 7 = (x + 2)2 + 3 > 0
b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0
c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0
d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0
e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0
f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0
a : x2 + 4x + 7 = (x + 2)2 + 3 > 0
b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0
c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0
d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0
e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0
f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0
: Tìm x, biết:
a) 3x( 4x- 1) - 2x(6x- 3 )=30 b) 2x(3-2x) + 2x(2x-1)=15
c) (5x-2)(4x-1) + (10x +3)(2x - 1)=1 d) (x+2) (x+2)- (x -3)(x+1) = 9
e) (4x+1)(6x-3) = 7 + (3x – 2)(8x + 9) g) (10x+2)(4x- 1)- (8x -3)(5x+2) =14
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
Bài 1:chứng minh các biểu thức luôn nhận giá trị dương với mọi x:
a)E=4x^2+6x+5. b)F=2x^2-3x+7
c)K=5x^2-4x+1. d)Q=3x^2+2x+5
cho hai đa thứ a= x-3x^3+1+4x^2 và b= x-x^3-2022-2x^3 - 2x^2
tính c=a-b. chứng tỏ c luôn dương với mọi xC = A - B
= (x - 3x³ + 1 + 4x²) - (x - x³ - 2022 - 2x³ - 2x²)
= x - 3x³ + 1 + 4x² - x + x³ + 2022 + 2x³ + 2x²
= (-3x³ + x³ + 2x³) + (4x² + 2x²) + (1 + 2022)
= 6x² + 2023
Do x² ≥ 0 với mọi x
⇒ 6x² ≥ 0 với mọi x
⇒ 6x² + 2023 > 0 với mọi x
Vậy C luôn dương với mọi x
C = A - B
= (x - 3x³ + 1 + 4x²) - (x - x³ - 2022 - 2x³ - 2x²)
= x - 3x³ + 1 + 4x² - x + x³ + 2022 + 2x³ + 2x²
= (-3x³ + x³ + 2x³) + (4x² + 2x²) + (1 + 2022)
= 6x² + 2023
Do x² ≥ 0 với mọi x
⇒ 6x² ≥ 0 với mọi x
⇒ 6x² + 2023 > 0 với mọi x
Vậy C luôn dương với mọi x
1.Tính
a, 5x^3yz . (-7x^2y^3)
b, 6x(x-5) -x(6x+3)
c, (x-9)(x^2-2x-1)
2.Cho A (x)=10-2x+4x^3-5x^2
B(x)=-10x^3-5x+6x^2-20
Tính A(x)+B(x); A(x)-B(x)
3.Tìm nghiệm
a,M(x)= 5x+20
b,N(x)=100x^2-49
c,P(x)=3x-15
b. 6x(x - 5) - x(6x + 3)
= x(6x - 30) - x(6x + 3)
= x(6x - 30 - 6x - 3)
= x(-33)
= -33x