Tìm x
a,2/3x=-4/27
b,1/3+1/2:x=-4
bài 3 tìm x :
A ) x + 4/9 = 5/27
b ) x - 4/11= 7/33
c ) 8/5 - x = 1/3 x 2/5
d ) x - 3/4 = 1/2 + 2/6
a) \(x+\dfrac{4}{9}=\dfrac{5}{27}\)
\(x=\dfrac{5}{27}-\dfrac{4}{9}\)
\(x=-\dfrac{7}{27}\)
b) \(x-\dfrac{4}{11}=\dfrac{7}{33}\)
\(x=\dfrac{7}{33}+\dfrac{4}{11}\)
\(x=\dfrac{19}{33}\)
c) \(\dfrac{8}{5}-x=\dfrac{1}{3}\times\dfrac{2}{5}\)
\(\dfrac{8}{5}-x=\dfrac{2}{15}\)
\(x=\dfrac{8}{5}-\dfrac{2}{15}\)
\(x=\dfrac{22}{15}\)
d) \(x-\dfrac{3}{4}=\dfrac{1}{2}+\dfrac{2}{6}\)
\(x-\dfrac{3}{4}=\dfrac{5}{6}\)
\(x=\dfrac{5}{6}+\dfrac{3}{4}\)
\(z=\dfrac{19}{12}\)
Giải các phương trình sau:
a,|-5x|+|7-x|=27
b,|3x-1|+|x+4|=21
c,2|3x|-5|x+2|=-7
d,|3x-5|+2=|15-3x|
e,|2x+1|-|5-3x|=2
tìm x biết
a)(x+3)(x^2-3x+9)-x(x-2)^2=27
b) (x-1)(x-5)=3
a) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)^2=27.\)
\(\Leftrightarrow x^3+27-x\left(x^2-4x+4\right)-27=0.\)
\(\Leftrightarrow x^3-x^3+4x^2-4x=0.\)
\(\Leftrightarrow4x\left(x-1\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=0.\\x-1=0.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0.\\x=1.\end{matrix}\right.\)
Vậy \(S=\left\{0;1\right\}.\)
Tìm x
a) -3 1/2 : (4/5-1/2x) = 2^2
b) 2x + 3x = 5
c) -2/3x - 1/3x = -2
d) -2/3 (x+1) - 1/2 = -1/3
a: =>-7/2:(4/5-1/2x)=4
=>4/5-1/2x=-7/2:4=-7/8
=>1/2x=4/5+7/8=67/40
=>x=67/20
b: =>5x=5
=>x=1
c: =>x(-2/3-1/3)=-2
=>-x=-2
=>x=2
d: =>-2/3(x+1)=-1/3+1/2=1/6
=>x+1=-1/6:2/3=-1/6*3/2=-3/12=-1/4
=>x=-1/4-1=-5/4
1.Tìm x
a)\(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{(x-1)(x+3)}=4-2x\)
b)\(\sqrt{3x-2}+\sqrt{x-1}=4x-9+2\sqrt{3x^2-5x+2}\)
a) \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x+3\right)\left(x-1\right)}=-\left(x+3+x-1-6\right)\)\(\left(Đk:x\ge1\right)\)
\(\left(\sqrt{x-1}+\sqrt{x+3}\right)^2+\sqrt{x-1}+\sqrt{x-3}-6=0\)
\(\left(\sqrt{x-1}+\sqrt{x+3}+3\right)\left(\sqrt{x-1}+\sqrt{x+3}-2\right)=0\)
Đến đây em xét các trường hợp rồi bình phương lên là được nha
b) \(\sqrt{3x-2}+\sqrt{x-1}=3x-2+x-1-6+2\sqrt{\left(3x-2\right)\left(x-1\right)}\left(Đk:x\ge1\right)\)
\(\left(\sqrt{3x-2}+\sqrt{x-1}\right)^2-\left(\sqrt{3x-2}+\sqrt{x-1}\right)-6=0\)
\(\left(\sqrt{3x-2}+\sqrt{x-1}-3\right)\left(\sqrt{3x-2}+\sqrt{x-1}+2\right)=0\)
Đến đây em xét các trường hợp rồi bình phương lên là được nha
a/ ĐKXĐ: $x\geq 1$
Đặt $\sqrt{x-1}=a; \sqrt{x+3}=b$ thì pt trở thành:
$a+b+2ab=6-(a^2+b^2)$
$\Leftrightarrow a^2+b^2+2ab+a+b-6=0$
$\Leftrightarrow (a+b)^2+(a+b)-6=0$
$\Leftrightarrow (a+b-2)(a+b+3)=0$
Hiển nhiên do $a\geq 0; b\geq 0$ nên $a+b+3>0$. Do đó $a+b-2=0$
$\Leftrightarrow a+b=2$
Mà $b^2-a^2=(x+3)-(x-1)=4$
$\Leftrightarrow (b-a)(b+a)=4\Leftrightarrow (b-a).2=4\Leftrightarrow b-a=2$
$\Rightarrow \sqrt{x+3}=b=(a+b+b-a):2=(2+2):2=2$
$\Leftrightarrow x=1$ (tm)
b/
ĐKXĐ: $x\geq 1$
Đặt $\sqrt{3x-2}=a; \sqrt{x-1}=b(a,b\geq 0)$. Khi đó pt đã cho trở thành:
$a+b=a^2+b^2-6+2ab$
$\Leftrightarrow a^2+b^2+2ab-(a+b)-6=0$
$\Leftrightarrow (a+b)^2-(a+b)-6=0$
$\Leftrightarrow (a+b+2)(a+b-3)=0$
Hiển nhiên $a+b+2>0$ với mọi $a,b\geq 0$
Do đó $a+b-3=0\Leftrightarrow a+b=3$
$\Leftrightarrow b=3-a$.
Ta thấy $a^2-3b^2=1$. Thay $b=3-a$ vô thì:
$a^2-3(3-a)^2=1$
$\Leftrightarrow (a-2)(a-7)=0$
$\Leftrightarrow a=2$ hoặc $a=7$
Vì $a+b=3$ mà $a,b>0$ nên $a,b<3$. Do đó $a=2$
$\Leftrightarrow \sqrt{3x-2}=2$
$\Leftrightarrow x=2$
tìm x
a(14x^3+12x^2-14x):2x=(x+2)(3x-4)
b(4x−5)(6x+1)−(8x+3)(3x−4)=15
a: ĐKXD: x<>0
\(\dfrac{14x^3+12x^2-14x}{2x}=\left(x+2\right)\left(3x-4\right)\)
=>\(\dfrac{2x\left(7x^2+6x-7\right)}{2x}=\left(x+2\right)\left(3x-4\right)\)
=>\(7x^2+6x-7=3x^2-4x+6x-8\)
=>\(7x^2+6x-7=3x^2+2x-8\)
=>\(4x^2+4x+1=0\)
=>\(\left(2x+1\right)^2=0\)
=>2x+1=0
=>x=-1/2(nhận)
b: \(\left(4x-5\right)\left(6x+1\right)-\left(8x+3\right)\left(3x-4\right)=15\)
=>\(24x^2+4x-30x-5-\left(24x^2-32x+9x-12\right)=15\)
=>\(24x^2-26x-5-24x^2+23x+12=15\)
=>-3x+7=15
=>-3x=8
=>\(x=-\dfrac{8}{3}\)
tìm x
a,(x+5)(x-5)-x(x+3)=10 b,(2x+3)(2x-3)-4(x+2)^2=5
c,9x(x+5)-(3x+2)(3x-2)=7 d,(x+1)^3-x(x^2+3x-5)=8
a: =>x^2-25-x^2-3x=10
=>-3x=35
=>x=-35/3
b: =>4x^2-9-4(x^2+4x+4)=5
=>4x^2-9-4x^2-16x-16-5=0
=>-16x-30=0
=>x=-15/8
c: =>9x^2+45x-9x^2+4=7
=>45x=3
=>x=1/15
d: =>x^3+3x^2+3x+1-x^3-3x^2+5x=8
=>8x=7
=>x=7/8
1) tìm x
a) (5x+1)(x-4)-x+4=0
b)2x(x-5)-x(2x+3)=26
C) (x^2-x+1)(x+1)-x^3+3x=15
d) (x^2-5)(x+2)+5x=2x^2+17
Giải giúp mik với ak đang cần gấp
\(a,\Leftrightarrow\left(5x+1\right)\left(x-4\right)-\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(5x+1-x\right)=0\\ \Leftrightarrow5x\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x^2-10x-2x^2-3x=26\\ \Leftrightarrow-13x=26\\ \Leftrightarrow x=-2\\ c,\Leftrightarrow x^3+1-x^3+3x=15\\ \Leftrightarrow3x=14\\ \Leftrightarrow x=\dfrac{14}{3}\)
\(d,\Leftrightarrow x^3-5x+2x^2-10+5x-2x^2-17=0\\ \Leftrightarrow x^3-27=0\\ \Leftrightarrow x^3=27\\ \Leftrightarrow x=3\)
tìm x
a,\(\sqrt{3+\sqrt{x}}=4\)
b,\(\sqrt{x+3}=\sqrt{1-5x}\)
c,\(\sqrt{x^2+6x+9}=3x-1\)
a: Ta có: \(\sqrt{\sqrt{x}+3}=4\)
\(\Leftrightarrow\sqrt{x}+3=16\)
\(\Leftrightarrow\sqrt{x}=13\)
hay x=169
b: Ta có: \(\sqrt{x+3}=\sqrt{1-5x}\)
\(\Leftrightarrow x+3=1-5x\)
\(\Leftrightarrow6x=-2\)
hay \(x=-\dfrac{1}{3}\left(nhận\right)\)
a) \(\sqrt{3+\sqrt{x}}=4\left(đk:x\ge0\right)\)
\(\Leftrightarrow3+\sqrt{x}=16\Leftrightarrow\sqrt{x}=13\Leftrightarrow x=169\left(tm\right)\)
b) \(\sqrt{x+3}=\sqrt{1-5x}\left(đk:\dfrac{1}{5}\ge x\ge-3\right)\)
\(\Leftrightarrow x+3=1-5x\Leftrightarrow6x=-2\Leftrightarrow x=-\dfrac{1}{3}\left(ktm\right)\)
Vậy \(S=\varnothing\)
c) \(\sqrt{x^2+6x+9}=3x-1\left(đk:x\ge\dfrac{1}{3}\right)\)
\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\)
\(\Leftrightarrow\left|x+3\right|=3x-1\)
\(\Leftrightarrow x+3=3x-1\Leftrightarrow2x=4\Leftrightarrow x=2\left(tm\right)\)
a. \(\sqrt{3+\sqrt{x}}=4\) ĐKXĐ: \(x\ge0\)
<=> 3 + \(\sqrt{x}\) = 42
<=> \(3+\sqrt{x}=16\)
<=> \(\sqrt{x}=16-3\)
<=> \(\sqrt{x}=13\)
<=> x = 132
<=> x = 169 (TM)
b. \(\sqrt{x+3}=\sqrt{1-5x}\) ĐKXĐ: \(x\ge\dfrac{1}{5}\)
<=> \(\left(\sqrt{x+3}\right)^2=\left(\sqrt{1-5x}\right)^2\)
<=> \(|x+3|=|1-5x|\)
<=> \(\left[{}\begin{matrix}x+3=1-5x\\-\left(x+3\right)=-\left(1-5x\right)\\x+3=-\left(1-5x\right)\\-\left(x+3\right)=1-5x\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=\dfrac{-1}{3}\\x=1\\x=1\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=1\end{matrix}\right.\)
c. \(\sqrt{x^2+6x+9}=3x-1\)
<=> \(\sqrt{\left(x+3\right)^2}=3x-1\)
<=> \(|x+3|=3x-1\)
<=> \(\left[{}\begin{matrix}x+3=-\left(3x-1\right)\\x+3=3x-1\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x+3=-3x=1\\-2x=-4\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}4x=-2\\x=2\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=2\end{matrix}\right.\)
tìm x
a,(x+1)^3-(x-1)^3-6(x-1)^2=-10
b,x(x+5)(x-5)-(x+2)(x^2-2x+4)=42
c,(x-2)^3-(x-3)(x^2+3x+9)+6(x+1)^2=49
a) \(\left(x+1\right)^3-\left(x-1\right)^3-6\cdot\left(x-1\right)^2=10\)
\(\Rightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\cdot\left(x^2-2x+1\right)=10\)
\(\Rightarrow6x^2+2-6x^2+12x-6=10\)
\(\Rightarrow12x-4=10\)
\(\Rightarrow12x=14\)
\(\Rightarrow x=\dfrac{7}{6}\)
b) \(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=42\)
\(\Rightarrow x\left(x^2-25\right)-\left(x^3+8\right)=42\)
\(\Rightarrow x^3-25x-x^3-8=42\)
\(\Rightarrow-25x-8=42\)
\(\Rightarrow-25x=50\)
\(\Rightarrow x=\dfrac{50}{-25}=-2\)
c) \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)
\(\Rightarrow x^3-6x^2+12x-8-\left(x^3-27\right)+6\left(x^2+2x+1\right)=49\)
\(\Rightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)
\(\Rightarrow24x+25=49\)
\(\Rightarrow24x=24\)
\(\Rightarrow x=\dfrac{24}{24}=1\)