Cho a + b = 5, a.b = 2. Tính A = \(\left(a-b\right)^2\).
\(\left(a^5+b^5\right)\left(a+b\right)\ge\left(a^4+b^4\right)\left(a^2+b^2\right)\) (a.b>0)
Nhân bung nó ra:
\(\Leftrightarrow a^6+a^5b+ab^5+b^6\ge a^6+a^4b^2+a^2b^4+b^6\)
\(\Leftrightarrow a^5b-a^4b^2+ab^5-a^2b^4\ge0\)
\(\Leftrightarrow a^4b\left(a-b\right)-ab^4\left(a-b\right)\ge0\)
\(\Leftrightarrow ab\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow ab\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) luôn đúng với \(ab>0\)
cho a/b = c/d . tính \(\frac{a.b}{c.d}+\left[\left(\frac{a+b}{c+d}\right)^2:\left(\frac{a^2+b^2}{c^2+d^2}\right)\right]-\frac{a^2-b^2}{c^2-d^2}\)
Có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
=> \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2=\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\)
=> \(\frac{ab}{cd}+\left[\left(\frac{a+b}{c+d}\right)^2:\left(\frac{a^2+b^2}{c^2+d^2}\right)\right]-\frac{a^2-b^2}{c^2-d^2}\)
= \(\frac{ab}{cd}+1-\frac{a^2-b^2}{c^2-d^2}\)
= \(1\)
1/ cho \(\frac{a}{b}=\frac{c}{d}\) chứng minh rằng:
a) \(\frac{a.b}{c.d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b) \(\frac{a.d}{c.b}=\frac{\left(a+b\right).\left(a-b\right)}{\left(c+d\right).\left(c-d\right)}\)
2/ cho a.b=c2 chứng minh: \(\frac{a}{b}=\frac{\left(2.a+3.c\right)^2}{\left(2.c\right)+\left(3.b\right)^2}\)
1/ cho \(\frac{a}{b}=\frac{c}{d}\)chứng minh rằng:
a) \(\frac{a.b}{c.d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b)\(\frac{a,d}{c.b}=\frac{\left(a+b\right).\left(a-b\right)}{\left(c+d\right).\left(c-d\right)}\)
2/ cho \(a.b=c^2\)chứng minh : \(\frac{a}{b}=\frac{\left(2a+3c\right)^2}{\left(2c+3b\right)^2}\)
a, Ta có: \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\Rightarrow a=kb;c=kd\)
Thay:
\(\frac{ab}{cd}=\frac{b^2}{d^2}\)
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\)
=> đpcm
Chứng minh rằng :
\(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
Áp dụng :
a) Tính \(\left(a-b\right)^2\), biết \(a+b=7\) và \(a.b=12\)
b) Tính \(\left(a+b\right)^2\), biết \(a-b=7\) và \(a.b=3\)
Bài giải:
a) (a + b)2 = (a – b)2 + 4ab
- Biến đổi vế trái:
(a + b)2 = a2 +2ab + b2 = a2 – 2ab + b2 + 4ab
= (a – b)2 + 4ab
Vậy (a + b)2 = (a – b)2 + 4ab
- Hoặc biến đổi vế phải:
(a – b)2 + 4ab = a2 – 2ab + b2 + 4ab = a2 + 2ab + b2
= (a + b)2
Vậy (a + b)2 = (a – b)2 + 4ab
b) (a – b)2 = (a + b)2 – 4ab
Biến đổi vế phải:
(a + b)2 – 4ab = a2 +2ab + b2 – 4ab
= a2 – 2ab + b2 = (a – b)2
Vậy (a – b)2 = (a + b)2 – 4ab
Áp dụng: Tính:
a) (a – b)2 = (a + b)2 – 4ab = 72 – 4 . 12 = 49 – 48 = 1
b) (a + b)2 = (a – b)2 + 4ab = 202 + 4 . 3 = 400 + 12 = 412
CMR: (a + b)2 = (a - b)2 + 4ab
(a - b)2 = (a + b)2 - 4ab
Ta có: (a + b)2 = a2 + 2ab + b2
= a2 +2ab + b2 - 2ab +2ab
= a2 - 2ab + b2 + 2ab +2ab
= (a - b)2 +4ab
Ta có: (a - b)2 = a2 - 2ab + b2
= a2 - 2ab + b2 + 2ab - 2ab
= a2 + 2ab + b2 - 2ab - 2ab
= (a + b)2 - 4ab
Áp dụng:
a) Tính (a - b)2 , biết a + b = 7 và a.b = 12
Ta có: (a - b)2 = (a + b)2 - 4ab
= 72 - 4.12
= 49 - 48
Vậy (a - b)2 = 1
b) Tính (a + b)2 , biết a - b = 7 và a.b = 3
Ta có: (a + b)2 = (a - b)2 + 4ab
= 72 + 4.3
= 49 + 12
Vậy ( a + b)2 = 61
\(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab\)
\(=a^2+2ab+b^2=\left(a+b\right)^2\)
\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab\)
\(a^2-2ab+b^2=\left(a-b\right)^2\)
Áp dụng
a)\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
\(=7^2-4.12=49-48=1\)
b) \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
\(=7^2+4.3=49+12=61\)
Cho a,b,c thuộc Z thỏa mãn \(a.b-a.c+b.c-c^2=1\)
Tính \(A=\left(a+b\right)^{2017}+\left(a+b\right)^{2016}+2015\)
Cho \(a=-7\), \(b=4\). Tính giá trị của các biểu thức sau :
a) \(a^2+2.a.b+b^2\) và \(\left(a+b\right)\left(a+b\right)\)
b) \(a^2-b^2\) và \(\left(a+b\right)\left(a-b\right)\)
a) a2 + 2.a.b + b2 = 9 và ( a + b ) ( a + b ) = 9
b) a2 - b2 = 33 và ( a + b ) ( a - b ) = 33
Cho biểu thức A = \(\left(\dfrac{\sqrt{x}+2}{x-1}-\dfrac{\sqrt{x}-2}{x-2\sqrt{x}+1}\right):\dfrac{4x}{\left(x-1\right)^2}\)
a) Rút gọn A.
b) tính giá trị của A biết \(\left|x-5\right|=4\).
ĐKXĐ: \(x>0;x\ne1\)
\(A=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}\right).\dfrac{\left(x-1\right)^2}{4x}\)
\(=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{4x}\)
\(=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)
b.
\(\left|x-5\right|=4\Rightarrow\left[{}\begin{matrix}x-5=4\\x-5=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=1\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{\sqrt{9}+1}{2\sqrt{9}}=\dfrac{2}{3}\)
a) \(\frac{ab+b^2}{\left(a-1\right)^2}\) b) \(\frac{1+ab^2}{\left(a-2\right)\left(b+5\right)}\) c)\(\frac{\left(a+b^2\right)\left(a-2\right)}{a.b^2\left(a-1\right)}\) d) \(\frac{a^2b+b^3}{ab-a^2}\)
a) Biểu thức trên không có nghĩa khi \(\left(a-1\right)^2=0\)\(\Leftrightarrow a=1\)
b) Khi \(\orbr{\begin{cases}a-2=0\\b+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=2\\b=-5\end{cases}}\)
c) Khi \(a=0\)hoặc \(a=1\)hoặc \(b=0\)
d) Khi \(ab-a^2=0\)\(\Leftrightarrow a\left(b-a\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}a=0\\a=b\end{cases}}\)