Tìm X:
\(\left(-4\right)^3+\left|x\right|=2021\)
Tìm giá trị nhỏ nhất của :
G = \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-2021\right|\)
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-1|+|x-2021|=|x-1|+|2021-x|\geq |x-1+2021-x|=2020$
$|x-2|+|x-2020|=|x-2|+|2020-x|\geq |x-2+2020-x|=2018$
..............
$|x-1010|+|x-1012|\geq |x-1010+1012-x|=2$
Cộng theo vế thu được:
$G\geq 2020+2018+2016+...+2+|x-1011|$
$G\geq 1021110+|x-1011|\geq 1021110$
Vậy $G_{\min}=1021110$
Giá trị này đạt tại:
\(\left\{\begin{matrix} (x-1)(2021-x)\geq 0\\ (x-2)(2020-x)\geq 0\\ .....\\ (x-1010)(1012-x)\geq 0\\ x-1011=0\end{matrix}\right.\Leftrightarrow x=1011\)
Tìm giá trị nhỏ nhất của biểu thức:
\(M=\left|\left(x-2020\right)\left(x^2-16\right)\right|+2x\left(x-4\right)+8\left(4-x\right)+2021\)
M = |(x - 2020)(x2 - 16)| + 2x(x - 4) + 8(4 - x ) + 2021
= |(x - 2020)(x2 - 16)| + 2x(x - 4) - 8(x - 4 ) + 2021
= |(x - 2020)(x2 - 16)| + (x - 4)(2x - 8) + 2021
= |(x - 2020)(x2 - 16)| + 2(x - 4)2 + 2021
Lại có \(\hept{\begin{cases}\left|\left(x-2020\right)\left(x^2-16\right)\right|\ge0\forall x\\2\left(x-4\right)^2\ge0\forall x\end{cases}}\)
=> |(x - 2020)(x2 - 16) + 2(x - 4)2 + 2021 \(\ge2021\forall x\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2020\right)\left(x^2-16\right)=0\\2\left(x-4\right)^2=0\end{cases}}\)
Khi (x - 2020)(x2 - 16) = 0
=> \(\orbr{\begin{cases}x-2020=0\\x^2-16=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2020\\x=\pm4\end{cases}}\)(1)
Khi 2(x - 4)2 = 0
=> x - 4 = 0
=> x = 4 (2)
Từ (1) (2) => x = 4
Vậy Min M = 2021 <=> x = 4
Câu 1: Thực hiện phép tính
a, \(40\dfrac{1}{4}:\dfrac{5}{7}-25\dfrac{1}{4}:\dfrac{5}{7}-\dfrac{1}{2021}\)
b, \(\left|\dfrac{-5}{9}\right|.\sqrt{81}-2021^0.\dfrac{16}{25}\)
Câu 2: Tìm x
\(3\left(x-\dfrac{1}{3}\right)-7\left(x+\dfrac{3}{7}\right)=-2x+\dfrac{1}{3}\)
1:
a: =7/5(40+1/4-25-1/4)-1/2021
=21-1/2021=42440/2021
b: =5/9*9-1*16/25=5-16/25=109/25
Tìm Bmin biết B= \(\dfrac{\left|x-2020\right|+2021}{\left|x-2021\right|+2022}\)
3 coins cho ng trl đúng
Tìm Bmin biết B= \(\dfrac{\left|x-2020\right|+2021}{\left|x-2021\right|+2022}\)
3 coins cho ng trl đúng
\(=\dfrac{\left|x-2020\right|+2022-1}{\left|x-2020\right|+2022}=1-\dfrac{1}{\left|x-2020\right|+2022}\\ mà\left|x-2020\right|\ge0\\ \Rightarrow\left|x-2022\right|+2022\ge2022\)
\(\Rightarrow\dfrac{1}{\left|x-2020\right|+2022}\le\dfrac{1}{2022}\\ =1-\dfrac{1}{\left|x-2020\right|+2022}\ge1-\dfrac{1}{2022}\\ =\dfrac{2021}{2022}\\ \Rightarrow B_{min}=\dfrac{2021}{2022}.tại.x-2020=0\Rightarrow x=2020\)
Tính P\(=\left(x^3+12x-9\right)^{2021}\) khi \(x=\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\)
`x=\root{3}{4(\sqrt5+1)}-\root{3}{4(\sqrt5-1)}`
`<=>x^3=4(sqrt5+1)-4(\sqrt5-1)-3\root{3}{16(5-1)}(\root{3}{4(\sqrt5+1)}-\root{3}{4(\sqrt5-1)})`
`<=>x^3=4\sqrt5+4-4sqrt5+4-3\root{3}{64}x`
`<=>x^3=8-12x`
`<=>x^3+12x-8=0`
`=>P=(x^3+12-8-1)^2021=(-1)^2021=-1`
*Có gì khum hiểu comment bên dưới.
tìm giá trị nhỏ nhất
e) E= \(2.\left|x-\dfrac{1}{2}\right|+2021\)
g) G= \(\left|x-1\right|+\left|x-2\right|\)
h) H= \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
k) K= \(\left|x-1\right|+\left|2x-1\right|\)
lm nhanh giúp mk nhé mk đang cần gấp lắm
1
e) E >= 2021
dấu = xảy ra khi x=1/2
g) G = |x-1|+ |2-x| >= |x-1+2-x|=1
Dấu = xảy ra khi (x-1)(2-x)>=0 <=> 1<=x<=2
h) H = |x-1|+|x-2| + |x-3|
Ta có : |x-1| + |x-3| = |x-1| + |3-x| >= |x-1+3-x| = 2
|x-2| >=0
=> H>=2
Dấu = xảy ra khi (x-1)(3-x) >=0 ; x-2=0
<=> x=2
k) K = |x-1| + |2x-1|
2K = |2x-2| + |2x-1| + |2x-1|
Ta có : |2x-2| + |2x-1| = |2x-2| + |1-2x| >= |2x-2+1-2x|=1
|2x-1| >=0
Dấu = xảy ra (2x-2)(1-2x) >=0; 2x-1=0
<=> x=1/2
e)Vì \(\left|x-\dfrac{1}{2}\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-\dfrac{1}{2}\right|\ge0\forall x\\ \Rightarrow2\left|x-\dfrac{1}{2}\right|+2012\ge2012\forall x\)
Dấu "=" xảy ra khi x=\(\dfrac{1}{2}\)
Vậy...
b)G=|x-1|+ |2-x|\(\)
áp dụng bđt |a+b|+ |c+d|\(\ge\left|a+b+c+d\right|\forall x\)
\(\Rightarrow\)ta có |x-1|+ |2-x|\(\ge\) \(\left|x-1+2-x\right|\forall x\)
\(\Leftrightarrow\text{|x-1|+ |2-x| }\ge1\forall x\)
Dấu "=" xảy ra khi 1\(\le x\le2\) \(\forall x\)
Vậy...
h)H= |x-1|+|x-2| + |x-3|
Ta có |x-1| + |x-3|
=|x-1| + |3-x| ( trong giá trị tuyệt đối đổi dấu không cần đặt dấu trừ ở ngoài)
=>|x-1| + |3-x|\(\ge\left|x-1+3-x\right|\forall x\)
<=>|x-1| + |3-x|\(\ge2\forall x\) (1)
Mà |x-2|\(\ge0\forall x\) (2)
Từ (1) và (2)=> ta có |x-1|+|x-2| + |x-3| \(\ge2\forall x\)
Dấu "=" xảy ra khi x-2=0
<=>x=2
Vậy...
k) K = |x-1| + |2x-1|
2K = |2x-2| + |2x-1| + |2x-1|
Mà : |2x-2| + |2x-1|
=|2x-2| + |1-2x|\(\ge\text{|2x-2+1-2x|}\) \(\forall x\)
Lại có |2x-1| \(\ge\)0 \(\forall x\)
Dấu "=" xảy ra 2x-1=0
<=>x=\(\dfrac{1}{2}\)
Vậy....
Tìm giá trị nhỏ nhất
e) E=\(2.\left|x-\dfrac{1}{2}\right|+2021\)
g) G=\(\left|x-1\right|+\left|x-2\right|\)
h) H=\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
k) K=\(\left|x-1\right|+\left|2x-1\right|\)
Lm nhanh giúp mk nhé!Mk đang cần gấp lắm
tìm giá trị nhỏ nhất
e)E= \(2.\left|x-\dfrac{1}{2}\right|+2021\)
g) G=\(\left|x-1\right|+\left|x-2\right|\)
h) H=\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
k) K=\(\left|x-1\right|+\left|2x-1\right|\)
lm nhanh giúp mk nhé! mk đang cần gấp lắm
e) Ta có: \(2\left|x-\dfrac{1}{2}\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-\dfrac{1}{2}\right|+2021\ge2021\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)