Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ho quoc khanh
Xem chi tiết
Phùng Gia Bảo
Xem chi tiết
nanako
Xem chi tiết
Hoàng Tử Hà
6 tháng 4 2021 lúc 13:54

a/ \(y=\left(x^3-3x\right)^{\dfrac{3}{2}}\Rightarrow y'=\dfrac{3}{2}\left(x^3-3x\right)^{\dfrac{1}{2}}\left(x^3-3x\right)'=\dfrac{3}{2}\left(3x^2-3\right)\sqrt{x^3-3x}\)

b/ \(y'=5\left(\sqrt{x^3+1}-x^2+2\right)^4\left(\sqrt{x^3+1}-x^2+2\right)'=5\left(\sqrt{x^3+1}-x^2+2\right)^4\left(\dfrac{3x^2}{\sqrt{x^3+1}}-2x\right)\)c/ 

\(y'=14\left(x^6+2x-3\right)^6\left(x^6+2x-3\right)'=14\left(x^6+2x-3\right)^6\left(6x^5+2\right)\)

d/ \(y=\left(x^3-1\right)^{-\dfrac{5}{2}}\Rightarrow y'=-\dfrac{5}{2}\left(x^3-1\right)^{-\dfrac{7}{2}}\left(x^3-1\right)'=-\dfrac{15x^2}{2\sqrt{\left(x^3-1\right)^7}}\)

Như Nguyễn
Xem chi tiết
han tran
14 tháng 6 2017 lúc 14:50

ko pt đáp án

ILoveMath
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
dinh huong
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 8 2021 lúc 21:41

Đặt \(\left\{{}\begin{matrix}x+2=a\\y-1=b\end{matrix}\right.\)

\(\left(a+\sqrt{a^2+1}\right)\left(b+\sqrt{b^2+1}\right)=1\)

\(\Rightarrow\left\{{}\begin{matrix}b+\sqrt{b^2+1}=\sqrt{a^2+1}-a\\a+\sqrt{a^2+1}=\sqrt{b^2+1}-b\end{matrix}\right.\)

\(\Rightarrow a+b+\sqrt{a^2+1}+\sqrt{b^2+1}=\sqrt{a^2+1}+\sqrt{b^2+1}-a-b\)

\(\Rightarrow a+b=0\)

\(\Rightarrow x+2+y-1=0\)

\(\Rightarrow x+y=-1\)

ILoveMath
26 tháng 8 2021 lúc 21:23

\(\sqrt{x^2+5x+4}\) hay \(\sqrt{x^2+4x+5}\) thế bạn

Akai Haruma
26 tháng 8 2021 lúc 21:42

Lời giải:
ĐKĐB \(\Rightarrow (x+2-\sqrt{x^2+4x+5})(x+2+\sqrt{x^2+4x+5})(y-1+\sqrt{y^2-2y+2})=x+2-\sqrt{x^2+4x+5}\)

\(\Leftrightarrow -(y-1+\sqrt{y^2-2y+2})=x+2-\sqrt{x^2+4x+5}\)

\(\Leftrightarrow \sqrt{x^2+4x+5}-\sqrt{y^2-2y+2}=x+y+1(*)\)

 

ĐKĐB \(\Rightarrow (x+2+\sqrt{x^2+4x+5})(y-1+\sqrt{y^2-2y+2})(y-1-\sqrt{y^2-2y+2})=y-1-\sqrt{y^2-2y+2}\)

\(\Leftrightarrow -(x+2+\sqrt{x^2+4x+5})=y-1-\sqrt{y^2-2y+2}\)

\(\Leftrightarrow \sqrt{y^2-2y+2}-\sqrt{x^2+4x+5}=x+y+1(**)\)

Lấy $(*)+(**)\Rightarrow x+y+1=0$

$\Leftrightarrow x+y=-1$

 

Lizy
Xem chi tiết

ĐKXĐ: \(x\ge-2;y\ge0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\) pt đầu trở thành:

\(a\left(a^2+1\right)=b\left(ab+1\right)\)

\(\Leftrightarrow a^3+a=ab^2+b\)

\(\Leftrightarrow a^3-ab^2+a-b=0\)

\(\Leftrightarrow a\left(a^2-b^2\right)+a-b=0\)

\(\Leftrightarrow a\left(a-b\right)\left(a+b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+1\right)=0\)

\(\Leftrightarrow a-b=0\) (do \(a^2+ab+1>0;\forall a\ge0;b\ge0\))

\(\Leftrightarrow\sqrt{x+2}=\sqrt{y}\)

\(\Rightarrow y=x+2\)

Thế vào pt dưới:

\(x^2+\left(x+3\right)\left(x+3\right)=x+16\)

\(\Leftrightarrow2x^2+5x-7=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=3\\x=-\dfrac{7}{2}< -2\left(loại\right)\end{matrix}\right.\)

Hải Yến Lê
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 12 2021 lúc 7:38

\(ĐK:x,y\in R\)

Từ 2 PT \(\Leftrightarrow\sqrt{\left(x+1\right)^2+\left(y-1\right)^2}=\sqrt{\left(x-5\right)^2+\left(y+1\right)^2}\)

\(\Leftrightarrow x^2+2x+y^2-2y+2=x^2-10x+y^2+2y+26\\ \Leftrightarrow12x-4y-24=0\\ \Leftrightarrow3x-y-6=0\\ \Leftrightarrow y=3x-6\)

Thay vào \(PT\left(1\right)\Leftrightarrow\sqrt{\left(x-1\right)^2+\left(3x-8\right)^2}=\sqrt{\left(x+1\right)^2+\left(3x-7\right)^2}\)

\(\Leftrightarrow10x^2-50x+65=10x^2-40x+50\\ \Leftrightarrow10x=15\Leftrightarrow x=\dfrac{3}{2}\Leftrightarrow y=-\dfrac{3}{2}\)

Vậy hệ có nghiệm \(\left(x;y\right)=\left(\dfrac{3}{2};-\dfrac{3}{2}\right)\)