\(\text{1. Tìm x,y,z, biết:}\)
\(x+y=x:y=3\left(x-y\right)\)
tìm số hữu tỉ x,y,z biết:
a. \(\left(x-\frac{1}{3}\right)\left(y-\frac{1}{2}\right)\left(z-5\right)=0\)và \(x+2=y+1=z+3\)
b. \(x+y=xy=x:y\)( y khác 0 )
c. \(x-y=xy=x:y\) ( y khác 0 )
d. \(x\left(x+y+z\right)=-5\) ; \(y\left(x+y+z\right)=9\) ; \(z\left(x+y+z\right)=5\)
b)xy=x:y=>y2=1
=>y=1 hoặc y=-1
*)y=1
=>x+1=x
=>0x=-1(L)
*)y=-1
=>x-1=-x
=>2x=1
=>x=1/2
Vậy y=-1 x=1/2
c)xy=x:y=>y2=1
=>y=1 hoặc y=-1
*)y=1
=>x-1=x
=>0x=1(L)
*)y=-1
=>x+1=-x
=>2x=-1
=>x=-1/2
Vậy y=-1 x=-1/2
d)x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+9+5=9
=>(x+y+z)2=9
=>x+y+z=3 hoặc x+y+z=-3
*)x+y+z=3
=>x=-5:3=-5/3
y=9:3=3
z=5:3=5/3
*)x+y+z=-3
=>x=-5:(-3)=5/3
y=9:(-3)=-3
z=5:(-3)=-5/3
Bài 1: Tìm x,y,z biết:
a) \(\left|1-2x\right|+\left|2-3y\right|+\left|3-4z\right|=0\)
b) \(x+y=x:y=5\left(x-y\right)\)
a) Ta có: \(\left|1-2x\right|+\left|2-3y\right|+\left|3-4z\right|\ge0\)
Mà \(\left|1-2x\right|+\left|2-3y\right|+\left|3-4z\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left|1-2x\right|=0\\\left|2-3y\right|=0\\\left|3-4z\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}1-2x=0\\2-3y=0\\3-4z=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=1\\3y=2\\4z=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{3}\\z=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{2};y=\dfrac{2}{3};z=\dfrac{3}{4}\)
\(Tìm\text{x},y,z,biết\)
\(a,\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|=0\)
\(b,\left|2-x\right|+\left|3-y\right|+\left|x+y+z\right|=0\)
Ta có: \(\hept{\begin{cases}\left|a\right|\ge0\\\left|b\right|\ge0\\\left|c\right|\ge0\end{cases}}\Rightarrow\left|a\right|+\left|b\right|+\left|c\right|\ge0\)
a)\(\Rightarrow\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\)
\("="\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)
b) \(\Rightarrow\left|2-x\right|+\left|3-y\right|+\left|x+y+z\right|\ge0\)
\("="\Leftrightarrow\hept{\begin{cases}x=2\\y=3\\z=-5\end{cases}}\)
a) \(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|=0\)
Ta có: \(\left|\frac{1}{4}-x\right|\ge0\)với mọi x
\(\left|x-y+z\right|\ge0\)vơi mọi x, y, z
\(\left|\frac{2}{3}+y\right|\ge0\) với mọi y
\(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\) với nọi x, y, z
Dấu "=" xảy ra khi và chỉ khi" \(\hept{\begin{cases}\frac{1}{4}-x=0\\x-y+z=0\\\frac{2}{3}+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)
câu b cách làm giống như câu a
\(Cho\text{ }x,y,z\text{ }\in R\text{ thỏa}\text{ }xyz=1.\text{Tìm Min:}\)
\(P=\left(\left|xy\right|+\left|yz\right|+\left|zx\right|\right)\left[15\sqrt{x^2+y^2+z^2}-7\left(x+y-z\right)\right]+1\)
Tìm \(x;y;z\in Q\) biết:
a) \(x-y=2\left(x+y\right)=x:y\)
b) \(x+y=x\cdot y=x:y\)
c) \(x+y=\frac{7}{12};y+z=\frac{-19}{24};z+x=\frac{1}{8}\)
\(x-y=2x+2y\Leftrightarrow x=2x+3y\Leftrightarrow x+3y=0\Leftrightarrow x=-3y\Leftrightarrow x:y=-3\Rightarrow x+y=\frac{-3}{2};x-y=-3\Rightarrow2x=\frac{-9}{2}\Rightarrow x=\frac{-9}{4}\Rightarrow y=\frac{3}{4}\)
b) \(x+y=x.y=x:y\)
Xét \(x.y=x:y\Leftrightarrow x=x:y^2\)
\(\Leftrightarrow y^2=1\)
\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)
Xét \(y=1\) ta có:
\(x+1=x=x\)
Vì \(x+1\ne x\) nên điều trên không thỏa mãn.
Xét \(y=-1\) ta có:
\(x-1=-x=-x\)
\(\Rightarrow x-1=-x\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=1:2\)
\(\Rightarrow x=\frac{1}{2}\left(TM\right)\)
Vậy \(\left(x;y\right)\in\left\{\frac{1}{2};-1\right\}.\)
Mình chỉ làm mỗi câu b) thôi nhé bạn.
Chúc bạn học tốt!
Tìm x,y,z
a)\(\frac{x}{4}-\frac{1}{9}=\frac{1}{2}\left(xthuộcZ\right)\)
b)\(x+y=xy=x:y\left(với\right)xykhác0\)
c)\(x-y=xy=xy\left(ykhac0\right)\)
d)\(\left(x+1\right)\left(x-2\right)< 0\)
e)\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
f)\(x\left(x+y+z\right)=-5\)
\(y\left(x+y+z\right)=9\)
\(z\left(x+y+z\right)=5\)
a: \(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{9}=\dfrac{11}{18}\)
hay \(x=\dfrac{11}{18}:\dfrac{1}{4}=\dfrac{11}{18}\cdot4=\dfrac{44}{18}=\dfrac{22}{9}\)
d: =>x+1;x-2 khác dấu
Trường hợp 1: \(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Leftrightarrow-1< x< 2\)
Trường hợp 2: \(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Leftrightarrow2< x< -1\left(loại\right)\)
e: =>x-2>0 hoặc x+2/3<0
=>x>2 hoặc x<-2/3
Cho P= \(\frac{x^2}{\left(x+y\right)\left(x-y\right)}\)- \(\frac{y^2}{\left(x+y\right)\left(1+x\right)}\)-\(\frac{x^2\cdot y^2}{\left(x+1\right)\left(1-y\right)}\)
a, Rút gọn b, Tìm (x:y) thuộc z để P=3
\(\text{Cho x,y,z }\in R\text{ thỏa mãn điều kiện }xyz=1\text{.Tìm Min:}\)
\(P=\left(\left|xy\right|+\left|yz\right|\left|zx\right|\right).\left[15\sqrt{x^2+y^2+z^2}-7\left(x+y-z\right)\right]+1\)
\(\left|xy\right|+\left|yz\right|+\left|zx\right|\)
Biết x+ y+ z= 2020 Tính
P=\(\frac{\text{x^3+y^3+z^3-3xyz}}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
Bài làm:
Ta có: \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-\left[3xy\left(x+y\right)+3xyz\right]\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
và
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)
\(=x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\)
\(=2\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Từ đó thay vào P rút ra:
\(P=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}=\frac{2020}{2}=1010\)
Vậy P = 1010