Giải bpt sau :
Đề bài thiếu bạn, BPT thiếu 1 vế, vế còn lại là \(\ge0;\le0,>0,< 0\)?
Giải bpt
x + \(\sqrt{x-2}\) ≤ 2 + \(\sqrt{x-2}\)
ĐKXĐ: \(x\ge2\)
BĐT trở thành:
\(x+\sqrt{x-2}\le2+\sqrt{x-2}\Rightarrow x\le2\)
Kết hợp điều kiện ban đầu ta được: \(x=2\)
Vậy BPT có nghiệm duy nhất \(x=2\)
giải bpt x+1/x<2 giúp zới
2x+1/x +3≥ 3-5x/5 +4x+1/4
giải bpt
Giải BPT
x6 - 14x4 + 49x2 > 36
\(x^6-14x^4+49x^2>36\)
\(\Leftrightarrow x^6-x^5+x^5-x^4-13x^4+13x^3-13x^3+13x^2+36x^2-36x+36x-36>0\)
\(\Leftrightarrow x^5\left(x-1\right)+x^4\left(x-1\right)-13x^3\left(x-1\right)-13x^2\left(x-1\right)+36x\left(x-1\right)+36\left(x-1\right)>0\)
\(\Leftrightarrow\left(x-1\right)\left(x^5+x^4-13x^3-13x^2+36x+36\right)>0\)
\(\Leftrightarrow\left(x-1\right)\left[x^4\left(x+1\right)-13x^2\left(x+1\right)+36\left(x+1\right)\right]>0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^4-13x^2+36\right)>0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^4-9x^2-4x^2+36\right)>0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left[x^2\left(x^2-9\right)-4\left(x^2-9\right)\right]>0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-9\right)\left(x^2-4\right) >0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x+3\right)\left(x-3\right)>0\)
Để \(\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x+3\right)\left(x-3\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}x>3\\x< -3\end{matrix}\right.\)
Vậy để \(\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x+3\right)\left(x-3\right)>0\) thì x>3 hoặc x<-3
Giải bpt
(x-2)(x+2)<(x-1)^2<5
bài 1: giải các BPT sau
a ) \(\dfrac{1+x}{1-x}\) \(\ge\) 0
b) \(\dfrac{2x+3}{2-5x}\) \(\le\) 0
a)
\(\left(a\right)\Leftrightarrow\dfrac{x+1}{x-1}\le0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\ge0\\x-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1\le0\\x-1\ge0\end{matrix}\right.\end{matrix}\right.\)
(I) \(\Rightarrow\left\{{}\begin{matrix}x\ge-1\\x< 1\end{matrix}\right.\) \(\Rightarrow-1\le x< 1\)
(II)\(\Rightarrow\left\{{}\begin{matrix}x\le-1\\x>1\end{matrix}\right.\) vô nghiệm
Kết luận ;\(-1\le x< 1\)
\(\left(b\right)\Leftrightarrow\dfrac{2x+3}{5x-2}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+3\ge0\\5x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x+3\le0\\5x-2< 0\end{matrix}\right.\end{matrix}\right.\)
(I)\(\Rightarrow x\le-\dfrac{3}{2}\)
(II)\(\Rightarrow x>\dfrac{2}{5}\)
Kết luận nghiệm \(\left[{}\begin{matrix}x\le-\dfrac{3}{2}\\x>\dfrac{2}{5}\end{matrix}\right.\)
giải BPT
a, \(1-x+2\sqrt{2x^2-3x-5}< 0\)
Điều kiện xác định : \(2x^2-3x-5\ge0\Leftrightarrow\left(x+1\right)\left(2x-5\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\ge\frac{5}{2}\\x\le-1\end{cases}}\)
Ta có : \(1-x+2\sqrt{2x^2-3x-5}< 0\Leftrightarrow2\sqrt{2x^2-3x-5}< x-1\)
Bình phương hai vế : \(4\left(2x^2-3x-5\right)< x^2-2x+1\)
\(\Leftrightarrow7x^2-10x-21< 0\)
Tới đây lập bảng xét dấu là ra nhé :)
(Cần chú ý tới điều kiện của bài toán)
mik cũng lm đến đó rồi nhưng thầy cho đáp án la 5/2<x<3
Để mình lập bảng cho bạn nhé :)
Đặt \(f\left(x\right)=7x^2-10x-21\)
x | \(-\infty\) | \(\frac{5-2\sqrt{43}}{7}\) | \(\frac{5+2\sqrt{43}}{7}\) | \(+\infty\) |
f(x) | + | 0 --- | 0 | + |
Vậy nghiệm của bpt : \(\frac{5}{2}\le x< \frac{5+2\sqrt{43}}{7}\)