Bất phương trình bậc nhất một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Phươngg Thảo

Giải BPT
x6 - 14x4 + 49x2 > 36

Trần Thị Hồng Ngát
5 tháng 5 2018 lúc 21:17

\(x^6-14x^4+49x^2>36\)
\(\Leftrightarrow x^6-x^5+x^5-x^4-13x^4+13x^3-13x^3+13x^2+36x^2-36x+36x-36>0\)

\(\Leftrightarrow x^5\left(x-1\right)+x^4\left(x-1\right)-13x^3\left(x-1\right)-13x^2\left(x-1\right)+36x\left(x-1\right)+36\left(x-1\right)>0\)

\(\Leftrightarrow\left(x-1\right)\left(x^5+x^4-13x^3-13x^2+36x+36\right)>0\)

\(\Leftrightarrow\left(x-1\right)\left[x^4\left(x+1\right)-13x^2\left(x+1\right)+36\left(x+1\right)\right]>0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^4-13x^2+36\right)>0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^4-9x^2-4x^2+36\right)>0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left[x^2\left(x^2-9\right)-4\left(x^2-9\right)\right]>0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-9\right)\left(x^2-4\right) >0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x+3\right)\left(x-3\right)>0\)

Để \(\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x+3\right)\left(x-3\right)>0\)

\(\Rightarrow\left[{}\begin{matrix}x>3\\x< -3\end{matrix}\right.\)

Vậy để \(\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x+3\right)\left(x-3\right)>0\) thì x>3 hoặc x<-3


Các câu hỏi tương tự
F.C
Xem chi tiết
Nguyễn Dương Hoa Viên
Xem chi tiết
Linh
Xem chi tiết
Quang
Xem chi tiết
Binh Le
Xem chi tiết
Hà Vy
Xem chi tiết