Đưa về hằng đẳng thức
x2+10x+26+y2+2y
(x+y+4)(x+y-4)
Khai triển hằng đẳng thức
1)-(y+6)^2
2)-(4-y)^2
3)-(2/3+x)^2
4)-(x-3/2)^2
5)-(2+3y)^2
6)-(2y-3)^2
7)-(5x+2y)^2
8)-(2x-3/2)^2
\(1,=-\left(y^2+12y+36\right)=-y^2-12y-36\)
\(2,=-\left(16-8y+y^2\right)=-16+8y-y^2\)
\(3,=-\left(\dfrac{4}{9}+\dfrac{4}{3}x+x^2\right)=-\dfrac{4}{9}-\dfrac{4}{3}x-x^2\)
\(4,=-\left(x^2-3x+\dfrac{9}{4}\right)=-x^2+3x-\dfrac{9}{4}\)
\(5,-\left(2+3y\right)^2=-\left(4+12y+9y^2\right)=-4-12y-9y^2\)
.... mấy ý còn lại bn tự lm nhé, tương tự thhooi
1) \(-\left(y+6\right)^2=-y^2-12y-36\)
2) \(-\left(4-y\right)^2=-y^2+8y-16\)
3) \(-\left(x+\dfrac{2}{3}\right)^2=-x^2-\dfrac{4}{3}x-\dfrac{4}{9}\)
4) \(-\left(x-\dfrac{3}{2}\right)^2=-x^2+3x-\dfrac{9}{4}\)
5) \(-\left(3y+2\right)^2=-9y^2-12y-4\)
6) \(-\left(2y-3\right)^2=-4y^2+12y-9\)
7) \(-\left(5x+2y\right)^2=-25x^2-20xy-4y^2\)
8) \(-\left(2x-\dfrac{3}{2}\right)^2=-4x^2+6x-\dfrac{9}{4}\)
Đề bài: Tìm GTLN của biểu thức: ( theo hằng đẳng thức đáng nhớ )
9. -5x mũ 2 - y mũ 2 - 4xy + 10x + 2y - 12
10. -x mũ 2 - 5/2y mũ 2 - 2xy - 2x + y - 4
Đưa các biểu thức sau về dạng hằng đẳng thức :
a,4x^2-y^2+2y-1
b,x^2-9y^2+2x+2y+3 phần 8
\(a,4x^2-y^2+2y-1\)
\(=4x^2-\left(y^2-2y+1\right)\)
\(=\left(2x\right)^2-\left(y-1\right)^2\)
\(=\left(2x-y+1\right)\left(2x+y-1\right)\)
chứng minh hằng đẳng thức sauu:
(a+b)2-(a-b)2:4=ab
2(x2+y2)=(x+y)2+(x-y)2
\(\dfrac{\left(a+b\right)^2-\left(a-b\right)^2}{4}=\dfrac{a^2+2ab+b^2-a^2+2ab-b^2}{4}=\dfrac{4ab}{4}=ab\left(đpcm\right)\)
\(\left(x+y\right)^2+\left(x-y\right)^2=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2=2\left(x^2+y^2\right)\left(dpcm\right)\)
Bài 1: Áp dụng hằng đẳng thức
a) ( x^4-2x^2y+y^2) : (y-x^2)
b) (x^2 -2xy^2+y^4) : (x-y^2)
a, (y-x^2)^2:(y-x^2) =y-x^2
b, (x-y^2)^2:(y-x^2)=x-y^2
học tốt
Bài làm:
a) \(\left(x^4-2x^2y+y^2\right)\div\left(y-x^2\right)\)
\(=\left(x^2-y\right)^2\div\left(y-x^2\right)\)
\(=\left(y-x^2\right)^2\div\left(y-x^2\right)\)
\(=y-x^2\)
b) \(\left(x^2-2xy^2+y^4\right)\div\left(x-y^2\right)\)
\(=\left(x-y^2\right)^2\div\left(x-y^2\right)\)
\(=x-y^2\)
a) ( x4 - 2x2y + y2 ) : ( y - x2 )
= ( x2 - y )2 : ( y - x2 )
= ( x2 - y )2 : ( x2 - y )
= x2 - y
b) ( x2 - 2xy2 + y4 ) : ( x - y2 )
= ( x - y2 )2 : ( x - y2 )
= x - y2
\(\frac{x^4+y^4}{2}+\frac{y^4+z^4}{2}+\frac{z^4+x^4}{2}\ge x^2y^2+y^2z^2+z^2x^2\)
Chứng minh hằng đẳng thức trên
Hằng đẳng thức ???
Áp dụng BĐT \(x^2+y^2\ge2xy\) ta có:
\(\frac{x^4+y^4}{2}\ge\frac{\left(x^2\right)^2+\left(y^2\right)^2}{2}\ge\frac{2x^2y^2}{2}=x^2y^2\)
Tương tự cho 2 BĐT còn lại cũng có;
\(\frac{y^4+z^4}{2}\ge y^2z^2;\frac{z^4+x^4}{2}\ge x^2z^2\)
Cộng theo vế 3 BĐT trên ta có:
\(VT=\frac{x^4+y^4}{2}+\frac{y^4+z^4}{2}+\frac{z^4+x^4}{2}\ge x^2y^2+y^2z^2+z^2x^2=VP\)
Khi \(x=y=z\)
Áp dụng bđt Cô si cho 2 số không âm, ta có:
\(\hept{\begin{cases}\frac{x^4+y^4}{2}\ge\sqrt{x^4y^4}=x^2y^2\\\frac{y^4+z^4}{2}\ge\sqrt{y^4z^4}=y^2z^2\\\frac{z^4+x^4}{2}\ge\sqrt{z^4x^4}=z^2x^2\end{cases}}\)
\(\Rightarrow\frac{x^4+y^4}{2}+\frac{y^4+z^4}{2}+\frac{z^4+x^4}{2}\ge x^2y^2+y^2z^2+z^2x^2\)
quốc huy khìn hử, đề có cho số dương hay ko âm đâu mà Cô si
Tìm x, y, z thỏa: x2 + 10x +y2 - 2y +26 + (3z – 6)2 = 0
\(x^2+10x+y^2-2y+26+\left(3z-6\right)^2=0\)
\(\Leftrightarrow x^2+10x+25+y^2-2y+1+\left(3z-6\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)^2+\left(y-1\right)^2+\left(3z-6\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x+5=0\\y-1=0\\3z-6=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=1\\z=2\end{cases}}\)
Chứng minh các đẳng thức sau:
a) 1 x + 2 = 2 x − 1 2 x 2 + 3 x − 2 với x ≠ -2 và x ≠ 1 2
b) y 2 − 5 y + 4 y − 4 = y 2 − 3 y + 2 y − 2 với y ≠ 2 và y ≠ 4.
Chứng minh đẳng thức |
x2 – 4 + ( x – 2 )2 = 2x ( x – 2 ) |
x2 - 4 + (x - 2)2
= (x - 2)(x + 2) + (x - 2)2
= (x - 2)(x + 2 + x - 2)
= 2x(x - 2)
Vậy x2 - 4 + (x - 2)2 = 2x(x - 2)